【題目】某車間生產(chǎn)某種產(chǎn)品,固定成本是萬(wàn)元,每生產(chǎn)件產(chǎn)品成本增加元,根據(jù)經(jīng)驗(yàn),當(dāng)年產(chǎn)量少于400件時(shí),總收益(成本與總利潤(rùn)的和,單位:元)是年產(chǎn)量(單位:件)的二次函數(shù);,當(dāng)年產(chǎn)量不少于件時(shí),RQ的一次函數(shù),以下是QR的部分?jǐn)?shù)據(jù):

Q/

50

200

350

500

650

R/

23750

80000

113750

125000

1332500

問(wèn):每年生產(chǎn)多少件產(chǎn)品時(shí),總利潤(rùn)最大?最大利潤(rùn)為多少?

【答案】當(dāng)每年生產(chǎn)400件時(shí)利潤(rùn)最大,最大利潤(rùn)為60000元.

【解析】試題分析:根據(jù)利潤(rùn)等于收益減去成本,而收益是分段函數(shù),利用待定系數(shù)法求對(duì)應(yīng)函數(shù)解析式,分別求對(duì)應(yīng)函數(shù)最大值,最后取兩個(gè)最大值中較大值

試題解析: 解:由給定的數(shù)據(jù)可得總利潤(rùn)與的關(guān)系為:

當(dāng)時(shí), 在區(qū)間為增函數(shù),

當(dāng)時(shí), 在區(qū)間為減函數(shù),

故當(dāng)每年生產(chǎn)400件時(shí)利潤(rùn)最大,最大利潤(rùn)為60000元.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì)于函數(shù)f(x)定義域中任意的x1 , x2(x1≠x2)有如下結(jié)論
1)f(x1+x2)=f(x1)f(x2
2)f(x1x2)=f(x1)+f(x2
3) >0
4)f( )<
5)f( )>
6)f(﹣x)=f(x).
當(dāng)f(x)=lgx時(shí),上述結(jié)論正確的序號(hào)為 . (注:把你認(rèn)為正確的命題的序號(hào)都填上).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在銳角三角形中,若,則的取值范圍是__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列語(yǔ)句:
是無(wú)限循環(huán)小數(shù);②x2-3x+2=0;③當(dāng)x=4時(shí),2x>0;
④垂直于同一條直線的兩條直線必平行嗎?⑤一個(gè)數(shù)不是合數(shù)就是質(zhì)數(shù);
⑥作△ABC≌△A'B'C';⑦二次函數(shù)的圖像太美了!
⑧4是集合{1,2,3}中的元素.
其中不是命題的有,是真命題的有.(只填序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)a>0且a≠1,函數(shù)y=a2x+2ax﹣1在[﹣1,1]的最大值是14,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知a>0且a≠1,函數(shù)f(x)=a 有最大值,則不等式loga(x2﹣5x+7)>0的解集為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=loga ,g(x)=1+loga(x﹣1),(a>0且a≠1),設(shè)f(x)和g(x)的定義域的公共部分為D,
(1)求集合D;
(2)當(dāng)a>1時(shí).若不等式g(x﹣ )﹣f(2x)>2在D內(nèi)恒成立,求a的取值范圍;
(3)是否存在實(shí)數(shù)a,當(dāng)[m,n]D時(shí),f(x)在[m,n]上的值域是[g(n),g(m)],若存在,求實(shí)數(shù)a的取值范圍,若不存在說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)f(x)是定義在R上的偶函數(shù),對(duì)任意x∈R,都有f(x﹣2)=f(x+2)且當(dāng)x∈[﹣2,0]時(shí),f(x)=( x﹣1,若在區(qū)間(﹣2,6]內(nèi)關(guān)于x的方程f(x)﹣loga(x+2)=0(a>1)恰有3個(gè)不同的實(shí)數(shù)根,則a的取值范圍是

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為調(diào)查了解某省屬師范大學(xué)師范類畢業(yè)生參加工作后,從事的工作與教育是否有關(guān)的情況,該校隨機(jī)調(diào)查了該校80位性別不同的2016年師范類畢業(yè)大學(xué)生,得到具體數(shù)據(jù)如下表:

與教育有關(guān)

與教育無(wú)關(guān)

合計(jì)

30

10

40

35

5

40

合計(jì)

65

15

80

1)能否在犯錯(cuò)誤的概率不超過(guò)5%的前提下,認(rèn)為師范類畢業(yè)生從事與教育有關(guān)的工作與性別有關(guān)?

參考公式:).

附表:

0.50

0.40

0.25

0.15

0.10

0.05

0.025

0.010

0.455

0.708

1.323

2.072

2.706

3.841

5.023

6.635

2)求這80位師范類畢業(yè)生從事與教育有關(guān)工作的頻率;

3)以(2)中的頻率作為概率.該校近幾年畢業(yè)的2000名師范類大學(xué)生中隨機(jī)選取4名,記這4名畢業(yè)生從事與教育有關(guān)的人數(shù)為,求的數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊(cè)答案