(本題滿分12分)

本公司計劃2012年在甲、乙兩個電視臺做總時間不超過300分鐘的廣告,廣告總費用不超過9萬元,甲、乙電視臺的廣告收費標準分別為500元/分鐘和200元/分鐘,規(guī)定甲、乙兩個電視臺為該公司所做的每分鐘廣告,能給公司事來的收益分別為0.3萬元和0.2萬元.問該公司如何分配在甲、乙兩個電視臺的廣告時間,才能使公司的收益最大,最大收益是多少萬元?

 

【答案】

該公司在甲電視臺做100分鐘廣告,在乙電視臺做200分鐘廣告,公司的收益最大,最大收益是70萬元.

【解析】本小題屬于線性規(guī)劃問題,解本小題的關(guān)鍵是先設(shè)公司在甲電視臺和乙電視臺做廣告的時間分別為分鐘和分鐘,總收益為元,得到建立目標函數(shù)為.然后作出可行域,找出最優(yōu)解即可.  

設(shè)公司在甲電視臺和乙電視臺做廣告的時間分別為分鐘和分鐘,總收益為元,由題意得

    目標函數(shù)為.          ………5分

    二元一次不等式組等價于

作出二元一次不等式組所表示的平面區(qū)域,即可行域.  

…………8分

    如圖:作直線,即

    平移直線,從圖中可知,當直線點時,目標函數(shù)取得最大值. 

    聯(lián)立解得

的坐標為.             ………………10分

    (元)

答:該公司在甲電視臺做100分鐘廣告,在乙電視臺做200分鐘廣告,公司的收益最大,最大收益是70萬元.                …………………12分

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

( 本題滿分12分 )
已知函數(shù)f(x)=cos4x-2sinxcosx-sin4x
(I)求f(x)的最小正周期;
(II)若x∈[0,
π2
]
,求f(x)的最大值,最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本題滿分12分)已知數(shù)列是首項為,公比的等比數(shù)列,,

設(shè),數(shù)列.

(1)求數(shù)列的通項公式;(2)求數(shù)列的前n項和Sn.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年上海市金山區(qū)高三上學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:解答題

(本題滿分12分,第1小題6分,第2小題6分)

已知集合A={x| | xa | < 2,xÎR },B={x|<1,xÎR }.

(1) 求A、B;

(2) 若,求實數(shù)a的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年安徽省高三10月月考理科數(shù)學(xué)試卷(解析版) 題型:解答題

(本題滿分12分)

設(shè)函數(shù)為常數(shù)),且方程有兩個實根為.

(1)求的解析式;

(2)證明:曲線的圖像是一個中心對稱圖形,并求其對稱中心.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年重慶市高三第二次月考文科數(shù)學(xué) 題型:解答題

(本題滿分12分,(Ⅰ)小問4分,(Ⅱ)小問6分,(Ⅲ)小問2分.)

如圖所示,直二面角中,四邊形是邊長為的正方形,上的點,且⊥平面

(Ⅰ)求證:⊥平面

(Ⅱ)求二面角的大;

(Ⅲ)求點到平面的距離.

 

查看答案和解析>>

同步練習(xí)冊答案