【題目】下列對各事件發(fā)生的概率判斷正確的是(

A.某學(xué)生在上學(xué)的路上要經(jīng)過4個路口,假設(shè)在各路口是否遇到紅燈是相互獨立的,遇到紅燈的概率都是,那么該生在上學(xué)路上到第3個路口首次遇到紅燈的概率為

B.三人獨立地破譯一份密碼,他們能單獨譯出的概率分別為,,,假設(shè)他們破譯密碼是彼此獨立的,則此密碼被破譯的概率為

C.甲袋中有8個白球,4個紅球,乙袋中有6個白球,6個紅球,從每袋中各任取一個球,則取到同色球的概率為

D.設(shè)兩個獨立事件AB都不發(fā)生的概率為A發(fā)生B不發(fā)生的概率與B發(fā)生A不發(fā)生的概率相同,則事件A發(fā)生的概率是

【答案】AC

【解析】

根據(jù)每個選項由題意進(jìn)行計算,從而進(jìn)行判斷即可

對于A,該生在第3個路口首次遇到紅燈的情況為前2個路口不是紅燈,第3個路口是紅燈,所以概率為,故A正確;

對于B,A、B、C分別表示甲、乙、丙三人能破譯出密碼,,,,“三個人都不能破譯出密碼發(fā)生的概率為,所以此密碼被破譯的概率為,B不正確;

對于C,設(shè)從甲袋中取到白球為事件A,,設(shè)從乙袋中取到白球為事件B,,故取到同色球的概率為,C正確;

對于D,易得,即,

,,又,

,∴,故D錯誤

故選AC

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù),其中.

(1)若為定值,求的最大值;

(2)求證:對任意,有 ;

(3)若,,求證:對任意,直線與曲線有唯一公共點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知命題表示雙曲線,命題表示橢圓.

1)若命題p與命題q都為真命題,則pq的什么條件?

2)若為假命題,且為真命題,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB分別是橢圓的左、右端點,F是橢圓的右焦點,點P在橢圓上,且位于x軸上方,PAPF.

1P的坐標(biāo);

2設(shè)M是橢圓長軸AB上的一點,M到直線AP的距離等于MB,求橢圓上的點到點M的距離d的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) 的一個極值點.

1)求函數(shù)的單調(diào)區(qū)間;

2)若當(dāng)時,恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某市工業(yè)部門計劃對所轄中小型企業(yè)推行節(jié)能降耗技術(shù)改造,下面是對所轄企業(yè)是否支持技術(shù)改造進(jìn)行的問卷調(diào)查的結(jié)果:

支持

不支持

合計

中型企業(yè)

40

小型企業(yè)

240

合計

560

已知從這560家企業(yè)中隨機抽取1家,抽到支持技術(shù)改造的企業(yè)的概率為.

(1)能否在犯錯誤的概率不超過0.025的前提下認(rèn)為“是否支持節(jié)能降耗技術(shù)改造”與“企業(yè)規(guī)!庇嘘P(guān)?

(2)從支持節(jié)能降耗的中小企業(yè)中按分層抽樣的方法抽出8家企業(yè),然后從這8家企業(yè)選出2家進(jìn)行獎勵,分別獎勵中型企業(yè)20萬元,小型企業(yè)10萬元.求獎勵總金額為20萬元的概率.

附:

0.05

0.025

0.01

3.841

5.024

6.635

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】我校高一年級研究性學(xué)習(xí)小組共有9名學(xué)生,其中有3名男生和6名女生.在研究性學(xué)習(xí)過程中,要進(jìn)行兩次匯報活動(即開題匯報和結(jié)題匯報),每次匯報都從這9名學(xué)生中隨機選1 人作為代表發(fā)言.設(shè)每人每次被選中與否均互不影響.

1求兩次匯報活動都由小組成員甲發(fā)言的概率;

2設(shè)為男生發(fā)言次數(shù)與女生發(fā)言次數(shù)之差的絕對值,求的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,直線為參數(shù),),曲線為參數(shù)),相切于點,以坐標(biāo)原點為極點,軸的非負(fù)半軸為極軸建立極坐標(biāo)系.

1)求的極坐標(biāo)方程及點的極坐標(biāo);

2)已知直線與圓交于兩點,記的面積為,的面積為,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù).

(1)求函數(shù)的單調(diào)區(qū)間;

(2)若函數(shù)零點,證明:.

查看答案和解析>>

同步練習(xí)冊答案