【題目】已知:以點(diǎn)()為圓心的圓與軸交

于點(diǎn)O, A,與y軸交于點(diǎn)O, B,其中O為原點(diǎn).

(1)求證:△OAB的面積為定值;

(2)設(shè)直線與圓C交于點(diǎn)M, N,若OM = ON,求圓C的方程.

【答案】1)根據(jù)條件寫成圓的方程,求出點(diǎn)A,B的坐標(biāo),進(jìn)而寫出△OAB的面積即可得證;

2

【解析】試題分析:(1)設(shè)出圓C的方程,求得A、B的坐標(biāo),再根據(jù)S△AOB=OAOB,計(jì)算可得結(jié)論.

(2)設(shè)MN的中點(diǎn)為H,則CHMN,根據(jù)C、H、O三點(diǎn)共線,KMN=﹣2,由直線OC的斜率,求得t的值,可得所求的圓C的方程.

試題解析:

(1),

設(shè)圓的方程是

,得;令,得

,即:的面積為定值.

(2) 垂直平分線段

直線的方程是

,解得:

當(dāng)時(shí),圓心的坐標(biāo)為,,此時(shí)到直線的距離,圓與直線相交于兩點(diǎn).

當(dāng)時(shí),圓心的坐標(biāo)為,,此時(shí)到直線的距離與直線不相交,不符合題意舍去.

的方程為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校高三共有2000名學(xué)生參加廣安市聯(lián)考,現(xiàn)隨機(jī)抽取100名學(xué)生的成績(jī)(單位:分),并列成如下表所示的頻數(shù)分布表:

組別

頻數(shù)

6

18

28

26

17

5

(1)試估計(jì)該年級(jí)成績(jī)分的學(xué)生人數(shù);

(2)已知樣本中成績(jī)?cè)?/span>中的6名學(xué)生中,有4名男生,2名女生,現(xiàn)從中選2人進(jìn)行調(diào)研,求恰好選中一名男生一名女生的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】公差不為零的等差數(shù)列{an}中,a3=7,且a2,a4a9成等比數(shù)列.

(1)求數(shù)列{an}的通項(xiàng)公式;

(2)設(shè)bn ,求數(shù)列{bn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知中國(guó)某手機(jī)品牌公司生產(chǎn)某款手機(jī)的年固定成本為40萬元,每生產(chǎn)1萬部還需另投入16萬元.設(shè)公司一年內(nèi)共生產(chǎn)該款手機(jī)萬部并全部銷量完,每萬部的銷售收入為萬元,且

1)寫出年利潤(rùn)萬元關(guān)于年產(chǎn)量(萬部)的函數(shù)解析式;

2)當(dāng)年產(chǎn)量為多少萬部時(shí),公司在該款手機(jī)的生產(chǎn)中所獲得的利潤(rùn)最大?并求出最大利潤(rùn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn)P(2,0),且圓C:x2+y2﹣6x+4y+4=0.

(Ⅰ)當(dāng)直線過點(diǎn)P且與圓心C的距離為1時(shí),求直線的方程;

(Ⅱ)設(shè)過點(diǎn)P的直線與圓C交于A、B兩點(diǎn),若|AB|=4,求以線段AB為直徑的圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某服裝商場(chǎng)為了了解毛衣的月銷售量y(件)與月平均氣溫x(℃)之間的關(guān)系,隨機(jī)統(tǒng)計(jì)了某4個(gè)月的月銷售量與當(dāng)月平均氣溫,其數(shù)據(jù)如下表:

(1) 算出線性回歸方程; (a,b精確到十分位)

(2)氣象部門預(yù)測(cè)下個(gè)月的平均氣溫約為3℃,據(jù)此估計(jì),求該商場(chǎng)下個(gè)月毛衣的銷售量.

(參考公式:)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)f(x) (m0n0)

(1) 當(dāng)mn1時(shí),求證:f(x)不是奇函數(shù);

(2) 設(shè)f(x)是奇函數(shù),mn的值;

(3) (2)的條件下,求不等式f(f(x))f <0的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=(x.

(Ⅰ)當(dāng)x∈[﹣1,1]時(shí),求函數(shù)y=[f(x)]2﹣2af(x)+3的最小值g(a);

(Ⅱ)在(Ⅰ)的條件下,是否存在實(shí)數(shù)m>n>3,使得g(x)的定義域?yàn)閇n,m],值域?yàn)閇n2,m2]?若存在,求出m、n的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐的底面是矩形,平面平面的中點(diǎn),且,.

I)求證:平面;

II)求三棱錐的體積.

查看答案和解析>>

同步練習(xí)冊(cè)答案