精英家教網 > 高中數學 > 題目詳情

【題目】已知數列是首項為2,公比為的等比數列,且前項和為.

(1)用表示;

(2)是否存在自然數,使得成立?

【答案】(1)Sn+1Sn+2; (2)見解析.

【解析】

(1)根據題意,得Sn=4,所以Sn+1=4Sn+2(n∈N).(2)利用分析法解答,要使不等式>2成立,只需不等式Sk-2<c<Sk(k∈N) ①成立,要使①成立,c只能取2或3.再討論c=2或3時,是否成立即得解.

(1)根據題意,得Sn=4.

所以Sn+1=4Sn+2(n∈N).

(2)要使不等式>2成立,

只需不等式<0成立.

因為Sk=4<4,

所以Sk=2-Sk>0(k∈N).

故只需不等式Sk-2<c<Sk(k∈N) ①成立.

因為Sk+1>Sk(k∈N),

所以Sk-2≥S1-2=1.

又Sk<4,故要使①成立,c只能取2或3.

當c=2時,因為S1=2,

所以當k=1時,c<Sk不成立.從而①不成立.

當k≥2時,因為S2-2=>c,由Sk<Sk+1

(k∈N),得Sk-2<Sk+1-2.

故當k≥2時, Sk-2>c.從而①不成立.

當c=3時,因為S1=2,S2=3,

所以當k=1, k=2時,c<Sk不成立.從而①不成立.

因為S3-2=>c, Sk-2<Sk+1-2,

所以當k≥3時, Sk-2>c.從而①不成立.

綜上,不存在自然數c和k,使不等式>2成立.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=(ax+1)ex﹣(a+1)x﹣1.
(1)求y=f(x)在(0,f(0))處的切線方程;
(2)若x>0時,不等式f(x)>0恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,四棱錐P﹣ABCD中,PA⊥底面ABCD,AB∥DC,DA⊥AB,AB=AP=2,DA=DC=1,E為PC上一點,且PE= PC.

(Ⅰ)求PE的長;
(Ⅱ)求證:AE⊥平面PBC;
(Ⅲ)求二面角B﹣AE﹣D的度數.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】自貢某個工廠于2016年下半年對生產工藝進行了改造(每半年為一個生產周期),從2016年一年的產品中用隨機抽樣的方法抽取了容量為50的樣本,用莖葉圖表示如圖所示,已知每個生產周期內與其中位數誤差在±5范圍內(含±5)的產品為優(yōu)質品,與中位數誤差在±15范圍內(含±15)的產品為合格品(不包括優(yōu)質品),與中位數誤差超過±15的產品為次品.企業(yè)生產一件優(yōu)質品可獲利潤20元,生產一件合格品可獲利潤10元,生產一件次品要虧損10元.

(Ⅰ)求該企業(yè)2016年一年生產一件產品的利潤的分布列和期望;
(Ⅱ)是否有95%的把握認為“優(yōu)質品與生產工藝改造有關”.
附:

P(K2≥k)

0.050

0.010

0.001

k

3.841

6.635

10.828

K2=

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設函數f(x)定義在區(qū)間(0,+∞)上,且f(1)=0,導函數f′(x)=,函數g(x)=f(x)+f′(x).

(1)求函數g(x)的最小值;

(2)是否存在x0>0,使得不等式|g(x)-g(x0)|<對任意x>0恒成立?若存在,請求出x0的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】我國古代數學名著《算法統(tǒng)宗》中有如下問題:“遠望巍巍塔七層,紅光點點倍加增,共燈三百八十一,請問尖頭幾盞燈?”意思是:一座7層塔共掛了381盞燈,且相鄰兩層中的下一層燈數是上一層燈數的2倍,則塔的頂層共有燈( )

A. 1盞 B. 3盞 C. 5盞 D. 9盞

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在△ABC中,角A,B,C所對邊分別是a,b,c,若sin(A﹣B)= sinAcosB﹣ sinBcosA.
(1)求證:A=B;
(2)若A= ,a= ,求△ABC的面積.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】傳承傳統(tǒng)文化再掀熱潮,央視科教頻道以詩詞知識競賽為主的《中國詩詞大會》火爆熒屏.將中學組和大學組的參賽選手按成績分為優(yōu)秀、良好、一般三個等級,隨機從中抽取了100名選手進行調查,下面是根據調查結果繪制的選手等級人數的條形圖.

(1)若將一般等級和良好等級合稱為合格等級,根據已知條件完成下面的列聯(lián)表,據此資料你是否有95%的把握認為選手成績“優(yōu)秀”與文化程度有關?

優(yōu)秀

合格

合計

大學組

中學組

合計

注:,其中.

0.10

0.05

0.005

2.706

3.841

7.879

(2)若參賽選手共6萬人,用頻率估計概率,試估計其中優(yōu)秀等級的選手人數.

(3)在優(yōu)秀等級的選手中取6名,依次編號為1,2,3,4,5,6.在良好等級的選手中取6名,依次編號為1,2,3,4,5,6,在選出的6名優(yōu)秀等級的選手中任取一名,記其編號為,在選出的6名良好等級的選手中任取一名,記其編號為,求使得方程組有唯一一組實數解的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】對某校高一年級學生參加社區(qū)服務次數進行統(tǒng)計,隨機抽取M名學生作為樣本,得到這M名學生參加社區(qū)服務的次數.根據此數據作出了頻數與頻率的統(tǒng)計表和頻率分布直方圖如下:

分組

頻數

頻率

[10,15)

10

0.25

[15,20)

25

n

[20,25)

m

p

[25,30)

2

0.05

合計

M

1

(1)求出表中M,p及圖中a的值;

(2)若該校高一學生有360人,試估計該校高一學生參加社區(qū)服務的次數在區(qū)間[15,20)內的人數;

(3)在所取樣本中,從參加社區(qū)服務的次數不少于20次的學生中任選2人,請列舉出所有基本事件,并求至多1人參加社區(qū)服務次數在區(qū)間[20,25)內的概率.

查看答案和解析>>

同步練習冊答案