【題目】在△中,已知,直線經(jīng)過點(diǎn)

(Ⅰ)若直線:與線段交于點(diǎn),且為△的外心,求△的外接圓的方程;

(Ⅱ)若直線方程為,且△的面積為,求點(diǎn)的坐標(biāo).

【答案】(Ⅰ) (Ⅱ)

【解析】

(Ⅰ)先求出直線的方程,進(jìn)而得到D點(diǎn)坐標(biāo),為直徑長(zhǎng),從而得到△的外接圓的方程;

(Ⅱ)由題意可得,,從而解得點(diǎn)的坐標(biāo).

(Ⅰ)解法一:由已知得,直線的方程為,

聯(lián)立方程組得:,解得

,△的外接圓的半徑為

∴△的外接圓的方程為

解法二:由已知得,,且為△的外心,∴△為直角三角形,為線段的中點(diǎn),∴圓心,圓的半徑,

∴△的外接圓的方程為.

或線段即為△的外接圓的直徑,故有△的外接圓的方程為,即

(Ⅱ)設(shè)點(diǎn)的坐標(biāo)為,由已知得,,

所在直線方程,

到直線的距離,①

又點(diǎn)的坐標(biāo)為滿足方程,即

聯(lián)立①②解得:,

∴點(diǎn)的坐標(biāo)為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為落實(shí)國(guó)家“精準(zhǔn)扶貧”政策,讓市民吃上放心蔬菜,某企業(yè)于2017年在其扶貧基地投入100萬(wàn)元研發(fā)資金,用于蔬菜的種植及開發(fā),并計(jì)劃今后十年內(nèi)在此基礎(chǔ)上,每年投入的資金比上一年增長(zhǎng)

(1)寫出第年(2018年為第一年)該企業(yè)投入的資金數(shù)(萬(wàn)元)與的函數(shù)關(guān)系式,并指出函數(shù)的定義域

(2)該企業(yè)從第幾年開始(2018年為第一年),每年投入的資金數(shù)將超過200萬(wàn)元?(參考數(shù)據(jù))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)y=ln4-x+1n2+x)的單調(diào)遞增區(qū)間為( 。

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),曲線在點(diǎn)處的切線方程為

(1)求的值;

(2)求上的單調(diào)區(qū)間;

(3)求上的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)當(dāng)時(shí),討論函數(shù)零點(diǎn)的個(gè)數(shù);

(2)若,當(dāng)=1時(shí),求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某生產(chǎn)企業(yè)研發(fā)了一種新產(chǎn)品,該產(chǎn)品在試銷一個(gè)階段后得到銷售單價(jià)(單位:元)和銷售量(單位:萬(wàn)件)之間的一組數(shù)據(jù),如下表所示:

銷售單價(jià)/元

9

9.5

10

10.5

11

銷售量/萬(wàn)件

11

10

8

6

5

(1)根據(jù)表中數(shù)據(jù),建立關(guān)于的回歸方程;

(2)從反饋的信息來看,消費(fèi)者對(duì)該產(chǎn)品的心理價(jià)(單位:元/件)在內(nèi),已知該產(chǎn)品的成本是元/件(其中),那么在消費(fèi)者對(duì)該產(chǎn)品的心理價(jià)的范圍內(nèi),銷售單價(jià)定為多少時(shí),企業(yè)才能獲得最大利潤(rùn)?(注:利潤(rùn)=銷售收入-成本)

參考數(shù)據(jù):,.

參考公式:,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某家庭進(jìn)行理財(cái)投資,根據(jù)長(zhǎng)期收益率市場(chǎng)預(yù)測(cè),投資類產(chǎn)品的收益與投資額成正比,投資類產(chǎn)品的收益與投資額的算術(shù)平方根成正比已知投資1萬(wàn)元時(shí)兩類產(chǎn)品的收益分別為0125萬(wàn)元和05萬(wàn)元

1分別寫出兩類產(chǎn)品的收益與投資額的函數(shù)關(guān)系;

2該家庭有20萬(wàn)元資金,全部用于理財(cái)投資,問:怎么分配資金能使投資獲得最大收益其最大收益是多少萬(wàn)元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知在等腰梯形中,,,,=60°,沿,折成三棱柱

(1)若分別為,的中點(diǎn),求證:∥平面;

(2)若,求二面角的余弦值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=(a、b∈R,a、b為常數(shù)),且y=f(x)在x=1處切線方程為y=x﹣1.
(1)求a,b的值;
(2)設(shè)h(x)= , k(x)=2h′(x)x2 , 求證:當(dāng)x>0時(shí),k(x)<+

查看答案和解析>>

同步練習(xí)冊(cè)答案