【題目】某產(chǎn)品的廣告支出(單位:萬元)與銷售收入(單位:萬元)之間有下表所對應(yīng)的數(shù)據(jù):

廣告支出(單位:萬元)

1

2

3

4

銷售收入(單位:萬元)

12

28

42

56

1)畫出表中數(shù)據(jù)的散點圖;

2)求出的線性回歸方程;

3)若廣告費為9萬元,則銷售收入約為多少萬元?

【答案】1)見解析(23129.4萬元.

【解析】

1)根據(jù)所給的數(shù)據(jù),描點畫出散點圖;

2)利用最小二乘法求線性回歸方程時,先列表,然后求出的值,根據(jù)公式求出,寫出線性回歸方程;

3)將代入線性回歸方程,求出的值即為答案.

1)散點圖如圖:

2)觀察散點圖可知各點大致分布在一條直線附近,列出下列表格,以備計算.

1

1

12

1

12

2

2

28

4

56

3

3

42

9

126

4

4

56

16

224

于是,

代入公式得:

.

的線性回歸方程為.

3)當萬元時,(萬元).

所以當廣告費為9萬元時,可預測銷售收入約為129.4萬元.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在正方體中,棱的中點為,若光線從點出發(fā),依次經(jīng)三個側(cè)面,,反射后,落到側(cè)面(不包括邊界),則入射光線與側(cè)面所成角的正切值的范圍是(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)fx)=a1nxax+1aRa≠0).

1)求函數(shù)fx)的單調(diào)區(qū)間;

2)求證:n≥2,nN*).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)定義在R上的函數(shù)f(x)是最小正周期為2π的偶函數(shù),f'(x)f(x)的導函數(shù),當x∈[0,π]時,0≤f(x)≤1;當x∈(0,π)x≠時, ,則函數(shù)y=f(x)-|sinx|在區(qū)間上的零點個數(shù)為( )

A. 4 B. 6 C. 7 D. 8

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】給出下面類比推理:

①“若2a<2b,則a<b”類比推出“若a2<b2,則a<b”;

②“(a+b)c=ac+bc(c≠0)”類比推出“ (c≠0)”;

③“a,b∈R,若a-b=0,則a=b”類比推出“a,b∈C,若a-b=0,則a=b”;

④“a,b∈R,若a-b>0,則a>b”類比推出“a,b∈C,若a-b>0,則a>b(C為復數(shù)集)”.

其中結(jié)論正確的個數(shù)為(  )

A. 1B. 2C. 3D. 4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在四棱錐中, 平面 , ,且, 為線段上一點.

(1)求證:平面平面;

(2)若,求證: 平面,并求四棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,設(shè)拋物線的焦點為F,點P是半橢圓上的一點,過點P作拋物線C的兩條切線,切點分別為A、B,且直線PA、PB分別交y軸于點M、N

1)證明:

(2)求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知為坐標原點,橢圓上頂點為,右頂點為,離心率,圓與直線相切.

1)求橢圓的標準方程;

2)若,為橢圓上的三個動點,直線,,的斜率分別為.

i)若的中點為,求直線的方程;

ii)若,證明:直線過定點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】第十四屆全國冬季運動會召開期間,某校舉行了冰上運動知識競賽,為了解本次競賽成績情況,從中隨機抽取部分學生的成績(得分均為整數(shù),滿分100)進行統(tǒng)計,請根據(jù)頻率分布表中所提供的數(shù)據(jù),解答下列問題:

1)求、、的值及隨機抽取一考生其成績不低于70分的概率;

2)若從成績較好的3、4、5組中按分層抽樣的方法抽取5人參加普及冰雪知識志愿活動,并指定2名負責人,求從第4組抽取的學生中至少有一名是負責人的概率.

組號

分組

頻數(shù)

頻率

1

15

0.15

2

35

0.35

3

b

0.20

4

20

5

10

0.1

合計

1.00

查看答案和解析>>

同步練習冊答案