【題目】(在平面直角坐標(biāo)系xOy中,已知曲線C1:x2+y2=1,以平面直角坐標(biāo)系xOy的原點O為極點,x軸的正半軸為極軸,取相同的單位長度建立極坐標(biāo)系,已知直線l:ρ(2cosθ﹣sinθ)=6.
(1)將曲線C1上的所有點的橫坐標(biāo)、縱坐標(biāo)分別伸長為原來的 、2倍后得到曲線C2 , 試寫出直線l的直角坐標(biāo)方程和曲線C2的參數(shù)方程;
(2)在曲線C2上求一點P,使點P到直線l的距離最大,并求出此最大值.

【答案】
(1)解:由題意可知:直線l的直角坐標(biāo)方程為:2x﹣y﹣6=0,

因為曲線C2的直角坐標(biāo)方程為:

∴曲線C2的參數(shù)方程為: (θ為參數(shù))


(2)解:設(shè)P的坐標(biāo)( ),則點P到直線l的距離為:

= ,

∴當(dāng)sin(60°﹣θ)=﹣1時,點P( ),

此時


【解析】(1)直接寫出直線l的直角坐標(biāo)方程,將曲線C1上的所有點的橫坐標(biāo)、縱坐標(biāo)分別伸長為原來的 、2倍后得到曲線C2的方程,然后寫出曲線C2的參數(shù)方程;(2)設(shè)出曲線C2上一點P的坐標(biāo),利用點P到直線l的距離公式,求出距離表達式,利用三角變換求出最大值.
【考點精析】通過靈活運用點到直線的距離公式,掌握點到直線的距離為:即可以解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】我國古代數(shù)學(xué)著作《九章算術(shù)》有如下問題:“今有器中米,不知其數(shù),前人取半,中人三分取一,后人四分取一,余米一斗五升.問,米幾何?”如圖是解決該問題的程序框圖,執(zhí)行該程序框圖,若輸出的S=1.5(單位:升),則輸入k的值為(
A.4.5
B.6
C.7.5
D.9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列命題的敘述:
①若p:x>0,x2﹣x+1>0,則¬p:x0≤0,x02﹣x0+1≤0;
②三角形三邊的比是3:5:7,則最大內(nèi)角為 π;
③若 = ,則 =
④ac2<bc2是a<b的充分不必要條件,
其中真命題的個數(shù)為(
A.1
B.2
C.3
D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)= (a≠0).
(1)試討論y=f(x)的極值;
(2)若a>0,設(shè)g(x)=x2emx , 且任意的x1 , x2∈[0,2],f(x1)﹣g(x2)≥﹣1恒成立,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在公差不為零的等差數(shù)列{an}中,已知a2=3,且a1、a3、a7成等比數(shù)列.
(1)求數(shù)列{an}的通項公式;
(2)設(shè)數(shù)列{an}的前n項和為Sn , 記bn= ,求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】將函數(shù)f(x)=2sin(2x+ )的圖象向右平移φ(φ>0)個單位,再將圖象上每一點的橫坐標(biāo)縮短到原來的 倍(縱坐標(biāo)不變),所得圖象關(guān)于直線x= 對稱,則φ的最小值為(
A. π
B. π
C. π
D. π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在極坐標(biāo)系下,已知圓O:ρ=cosθ+sinθ和直線l:ρsin(θ﹣ )=
(1)求圓O和直線l的直角坐標(biāo)方程;
(2)當(dāng)θ∈(0,π)時,求直線l與圓O公共點的極坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=Asin(ωx+φ),x∈R(其中A>0,ω>0, ),其部分圖象如圖所示. (I)求f(x)的解析式;
(II)求函數(shù) 在區(qū)間 上的最大值及相應(yīng)的x值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若函數(shù) 在某區(qū)間[a,b]上的值域為[ta,tb],則t的取值范圍

查看答案和解析>>

同步練習(xí)冊答案