【題目】已知函數(shù)f(x)= [ sin(x﹣ )].
(1)求f(x)的定義域和值域;
(2)說(shuō)明f(x)的奇偶性;
(3)求f(x)的單調(diào)增區(qū)間.
【答案】
(1)解:由題意得 ,即 ,
所以 ,
所以
因此f(x)的定義域?yàn)?
又因?yàn)? ,所以 ,
再考察 的圖象,可知 ,
所以f(x)的值域?yàn)?
(2)解:由(1)知f(x)的定義域不關(guān)于原點(diǎn)對(duì)稱,故f(x)是非奇非偶函數(shù)
(3)解:由題意可知
即 ,
所以f(x)的單調(diào)增區(qū)間為
【解析】(1)根據(jù)函數(shù)成立的條件結(jié)合對(duì)數(shù)函數(shù)的性質(zhì)進(jìn)行求解即可.(2)根據(jù)函數(shù)奇偶性的定義進(jìn)行判斷(3)根據(jù)復(fù)合函數(shù)單調(diào)性之間的關(guān)系進(jìn)行求解.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用復(fù)合函數(shù)單調(diào)性的判斷方法和函數(shù)的奇偶性的相關(guān)知識(shí)可以得到問(wèn)題的答案,需要掌握復(fù)合函數(shù)f[g(x)]的單調(diào)性與構(gòu)成它的函數(shù)u=g(x),y=f(u)的單調(diào)性密切相關(guān),其規(guī)律:“同增異減”;偶函數(shù)的圖象關(guān)于y軸對(duì)稱;奇函數(shù)的圖象關(guān)于原點(diǎn)對(duì)稱.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù), .
(1)分別求函數(shù)與在區(qū)間上的極值;
(2)求證:對(duì)任意, .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】先后2次拋擲一枚骰子,將得到的點(diǎn)數(shù)分別記為, .
(1)求直線與圓相切的概率;
(2)將, ,5的值分別作為三條線段的長(zhǎng),求這三條線段能圍成等腰三角形的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】給出下列命題:
①函數(shù) 是奇函數(shù);
②存在實(shí)數(shù)x,使sinx+cosx=2;
③若α,β是第一象限角且α<β,則tanα<tanβ;
④ 是函數(shù) 的一條對(duì)稱軸;
⑤函數(shù) 的圖象關(guān)于點(diǎn) 成中心對(duì)稱.
其中正確命題的序號(hào)為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某數(shù)學(xué)老師對(duì)本校2013屆高三學(xué)生某次聯(lián)考的數(shù)學(xué)成績(jī)進(jìn)行分析,按1:50進(jìn)行分層抽樣抽取20名學(xué)生的成績(jī)進(jìn)行分析,分?jǐn)?shù)用莖葉圖記錄如圖所示(部分?jǐn)?shù)據(jù)丟失),得到的頻率分布表如下:
分?jǐn)?shù)段(分) | [50,70] | [70,90] | [90,110] | [110,130] | [130,150] | 合計(jì) |
頻數(shù) | b | |||||
頻率 | a | 0.25 |
(1)表中a,b的值及分?jǐn)?shù)在[90,100)范圍內(nèi)的學(xué)生,并估計(jì)這次考試全校學(xué)生數(shù)學(xué)成績(jī)及格率(分?jǐn)?shù)在[90,150]范圍為及格);
(2)從大于等于110分的學(xué)生隨機(jī)選2名學(xué)生得分,求2名學(xué)生的平均得分大于等于130分的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】咖啡館配制兩種飲料,甲種飲料分別用奶粉、咖啡、糖。乙種飲料分別用奶粉、咖啡、糖。已知每天使用原料限額為奶粉、咖啡、糖。如果甲種飲料每杯能獲利元,乙種飲料每杯能獲利元。每天在原料的使用限額內(nèi)飲料能全部售出,每天應(yīng)配制兩種飲料各多少杯能獲利最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】解答
(1)已知2sinx=sin( ﹣x),求 的值;
(2)求函數(shù)f(x)=ln(sinx﹣ )+ 的定義域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形OQRP為矩形,其中P,Q分別是函數(shù)f(x)= sinwx(A>0,w>0)圖象上的一個(gè)最高點(diǎn)和最低點(diǎn),O為坐標(biāo)原點(diǎn),R為圖象與x軸的交點(diǎn).
(1)求f(x)的解析式
(2)對(duì)于x∈[0,3],方程f2(x)﹣af(x)+1=0恒有四個(gè)不同的實(shí)數(shù)根,求實(shí)數(shù)a的取值范圍
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知公比小于1的等比數(shù)列的前項(xiàng)和為.
(1)求數(shù)列的通項(xiàng)公式;
(2)設(shè),若,求.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com