已知動點(diǎn)P與雙曲線x2-y2=1的兩個(gè)焦點(diǎn)F1,F(xiàn)2的距離之和為定值,
(1)求動點(diǎn)P的軌跡方程;
(2)設(shè)M(0,-1),若斜率為k(k≠0)的直線l與P點(diǎn)的軌跡交于不同的兩點(diǎn)A、B,若要使|MA|=|MB|,試求k的取值范圍.
(1)∵x2-y2=1,∴c=. PF1|+|PF2|=a= b=1
∴P點(diǎn)的軌跡方程為+y2=1.
(2)設(shè)l:y=kx+m(k≠0),則由, 將②代入①得:(1+3k2)x2+6kmx+3(m2-1)=0 (*)
設(shè)A(x1,y1),B(x2,y2),則AB中點(diǎn)Q(x0,y0)的坐標(biāo)滿足
Q(-) ∵|MA|=|MB|,∴M在AB的中垂線上,
∴klkAB=-1 ,解得m= …③ 又由于(*)式有兩個(gè)實(shí)數(shù)根,知△>0,
即 (6km)2-4(1+3k2)[3(m2-1)]=12(1+3k2-m2)>0 ④ ,將③代入④得
12[1+3k2-()2]>0,解得-1<k<1,由k≠0,
∴k的取值范圍是k∈(-1,0)∪(0,1).
【解析】略
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
x2 |
4 |
y2 |
5 |
P1P2 |
3 |
4 |
3 |
2 |
OP1 |
OP2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:學(xué)習(xí)周報(bào) 數(shù)學(xué) 人教課標(biāo)高二版(A選修1-1) 2009-2010學(xué)年 第18期 總第174期 人教課標(biāo)版(A選修1-1) 題型:044
已知雙曲線C以x±y=0為漸近線,且過點(diǎn)A(3,2).
(1)求雙曲線C的標(biāo)準(zhǔn)方程;
(2)已知動點(diǎn)P與雙曲線C的兩個(gè)焦點(diǎn)所連線段長的和為6,求動點(diǎn)P的軌跡方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:學(xué)習(xí)周報(bào) 數(shù)學(xué) 人教課標(biāo)版高二(A選修2-1) 2009-2010學(xué)年 第18期 總第174期 人教課標(biāo)版(A選修2-1) 題型:044
已知雙曲線C以x±y=0為漸近線,且過點(diǎn)A(3,2).
(1)求雙曲線C的標(biāo)準(zhǔn)方程;
(2)已知動點(diǎn)P與雙曲線C的兩個(gè)焦點(diǎn)所連線段長的和為6,求動點(diǎn)P的軌跡方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
設(shè)P(a,b)(b≠0)是平面直角坐標(biāo)系xOy中的點(diǎn),l是經(jīng)過原點(diǎn)與點(diǎn)(1,b)的直線,記Q是直線l與拋物線x2=2py(p≠0)的異于原點(diǎn)的交點(diǎn)
⑴.已知a=1,b=2,p=2,求點(diǎn)Q的坐標(biāo)。
⑵.已知點(diǎn)P(a,b)(ab≠0)在橢圓+y2=1上,p=,求證:點(diǎn)Q落在雙曲線4x2-4y2=1上。
⑶.已知動點(diǎn)P(a,b)滿足ab≠0,p=,若點(diǎn)Q始終落在一條關(guān)于x軸對稱的拋物線上,試問動點(diǎn)P的軌跡落在哪種二次曲線上,并說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(上海卷理20)設(shè)P(a,b)(b≠0)是平面直角坐標(biāo)系xOy中的點(diǎn),l是經(jīng)過原點(diǎn)與點(diǎn)(1,b)的直線,記Q是直線l與拋物線x2=2py(p≠0)的異于原點(diǎn)的交點(diǎn)
⑴已知a=1,b=2,p=2,求點(diǎn)Q的坐標(biāo).
⑵已知點(diǎn)P(a,b)(ab≠0)在橢圓+y2=1上,p=,求證:點(diǎn)Q落在雙曲線4x2-4y2=1上.
⑶已知動點(diǎn)P(a,b)滿足ab≠0,p=,若點(diǎn)Q始終落在一條關(guān)于x軸對稱的拋物線上,試問動點(diǎn)P的軌跡落在哪種二次曲線上,并說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com