已知P、A、B、C是球O表面上的點(diǎn),PA⊥平面ABC,AC⊥BC,AC=1,BC=
3
,PA=
5
,則球O的表面積為( 。
分析:根據(jù)AC⊥BC,且PA⊥平面ABC,,得到三棱錐的三條側(cè)棱兩兩垂直,以三條側(cè)棱為棱長(zhǎng)得到一個(gè)長(zhǎng)方體,由圓的對(duì)稱性知長(zhǎng)方體的各個(gè)頂點(diǎn)都在這個(gè)球上,長(zhǎng)方體的體積就是圓的直徑,求出直徑,得到圓的面積.
解答:解:∵AC⊥BC,且PA⊥平面ABC,
∴三棱錐的三條側(cè)棱兩兩垂直,
∴可以以三條側(cè)棱為棱長(zhǎng)得到一個(gè)長(zhǎng)方體,
由圓的對(duì)稱性知長(zhǎng)方體的各個(gè)頂點(diǎn)都在這個(gè)球上,
∴球的直徑等于長(zhǎng)方體對(duì)角線,
即2R=
1+3+5
=3,
∴球的表面積是4π×R2=4π×(
3
2
2=9π
故選A.
點(diǎn)評(píng):本題考查球的體積與表面積,考查球與長(zhǎng)方體之間的關(guān)系,考查三棱錐與長(zhǎng)方體之間的關(guān)系,以及轉(zhuǎn)化、構(gòu)造補(bǔ)形的解題方法.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知P,A,B,C是平面內(nèi)四點(diǎn),且
PA
+
PB
+
PC
=
AC
,那么一定有( 。
A、
PB
=2
CP
B、
CP
=2
PB
C、
AP
=2
PB
D、
PB
=2
AP

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知P,A,B,C是以O(shè)為球心的球面上的四個(gè)點(diǎn),PA,PB,PC兩兩垂直,且PA=PB=PC=2,則球O的半徑為
 
;球心O到平面ABC的距離為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知P、A、B、C是平面內(nèi)四個(gè)不同的點(diǎn),且
PA
+
PB
+
PC
=
AC
,則( 。
A、C三點(diǎn)共線
B、P三點(diǎn)共線
C、P三點(diǎn)共線
D、P三點(diǎn)共線

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知P,A,B,C是球面上的四點(diǎn),∠ACB=90°,PA=PB=PC=AB=2,則該球的表面積是( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案