【題目】已知函數(shù)f(x)的圖象是由函數(shù)的圖象經(jīng)如下變換得到:先將g(x)圖象上所有點(diǎn)的縱坐標(biāo)伸長(zhǎng)到原來(lái)的2(橫坐標(biāo)不變),再將所得到的圖象向右平移個(gè)單位長(zhǎng)度.

1)求函數(shù)f(x)的解析式,并求其圖象的對(duì)稱軸方程;

2)已知關(guān)于x的方程f(x)+g(x)=m內(nèi)有兩個(gè)不同的解.

①求實(shí)數(shù)m的取值范圍;

②證明:.

【答案】1,對(duì)稱軸方程為:;(2,證明見(jiàn)解析

【解析】

1)根據(jù)三角函數(shù)平移伸縮變換法則直接得到解析式,再求對(duì)稱軸得到答案.

2)計(jì)算,計(jì)算得到答案;畫(huà)出圖像,討論,兩種情況,計(jì)算,計(jì)算得到證明.

1)三角函數(shù)平移伸縮變換法則:,

對(duì)稱軸滿足:,故對(duì)稱軸方程為:.

2)①,故.

其中,在內(nèi)有兩個(gè)不同的解,故,故.

,,如圖所示:

當(dāng)時(shí),,

;

當(dāng)時(shí),

.

綜上所述:.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】a,b為空間中兩條互相垂直的直線,等腰直角三角形ABC的直角邊AC所在直線與a,b都垂直,斜邊AB以直線AC為旋轉(zhuǎn)軸旋轉(zhuǎn),有下列結(jié)論:

當(dāng)直線ABa60°角時(shí),ABb30°角;

當(dāng)直線ABa60°角時(shí),ABb60°角;

直線ABa所成角的最小值為45°;

直線ABa所成角的最大值為60°.

其中正確的是________.(填寫(xiě)所有正確結(jié)論的編號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的兩焦點(diǎn)分別為,其短半軸長(zhǎng)為.

(1)求橢圓的方程;

(2)設(shè)不經(jīng)過(guò)點(diǎn)的直線與橢圓相交于兩點(diǎn).若直線的斜率之和為,求實(shí)數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù),其中為正實(shí)數(shù).

(1)若不等式恒成立,求實(shí)數(shù)的取值范圍;

(2)當(dāng)時(shí),證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】ABC的內(nèi)角A,B,C的對(duì)邊分別為a,b,c,已知△ABC的面積為

(1)求sinBsinC;

(2)若6cosBcosC=1,a=3,求△ABC的周長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】將參加夏令營(yíng)的400名學(xué)生編號(hào)為:001,002,…,400,采用系統(tǒng)抽樣的方法抽取一個(gè)容量為40的樣本,且隨機(jī)抽得的號(hào)碼為003,這400名學(xué)生分住在三個(gè)營(yíng)區(qū),從001到180在第一營(yíng)區(qū),從181到295在第二營(yíng)區(qū),從296到400在第三營(yíng)區(qū),三個(gè)營(yíng)區(qū)被抽中的人數(shù)分別為( )

A. 18,12,10 B. 20,12,8 C. 17,13,10 D. 18,11,11

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線Cy2=4x與橢圓E1ab0)有一個(gè)公共焦點(diǎn)F.設(shè)拋物線C與橢圓E在第一象限的交點(diǎn)為M.滿足|MF|.

1)求橢圓E的標(biāo)準(zhǔn)方程;

2)過(guò)點(diǎn)P1,)的直線交拋物線CA、B兩點(diǎn),直線PO交橢圓E于另一點(diǎn)Q.PAB的中點(diǎn),求△QAB的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的左、右焦點(diǎn)分別為,離心率為,過(guò)右焦點(diǎn)作直線交橢圓,兩點(diǎn),的周長(zhǎng)為,點(diǎn).

1)求橢圓的方程;

2)設(shè)直線的斜率,,請(qǐng)問(wèn)是否為定值?若是定值,求出其定值;若不是,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】將邊長(zhǎng)為3的正的各邊三等分,過(guò)每個(gè)分點(diǎn)分別作另外兩邊的平行線,稱的邊及這些平行線所交的10個(gè)點(diǎn)為格點(diǎn).若在這10個(gè)格點(diǎn)中任取個(gè)格點(diǎn),一定存在三個(gè)格點(diǎn)能構(gòu)成一個(gè)等腰三角形(包括正三角形).的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案