(本題滿分10分)已知函數(shù)是奇函數(shù):
(1)求實數(shù)的值; (2)證明在區(qū)間上的單調(diào)遞減
(3)已知且不等式對任意的恒成立,求實數(shù)的取值范圍.

(1);(2)。

解析試題分析:(1)由定義易得:……2分
(2)設(shè)
所以上的單調(diào)遞減。……6分
(3)已知且不等式對任意的恒成立,求實數(shù)的取值范圍.
為奇函數(shù)得:
因為,且在區(qū)間上的單調(diào)遞減,
任意的恒成立,故.……10分
考點:本題考查奇函數(shù)的性質(zhì);函數(shù)的單調(diào)性;單調(diào)性、奇偶性與不等式的綜合應(yīng)用。
點評:(1)熟記且靈活應(yīng)用奇函數(shù)的性質(zhì):若是奇函數(shù),且x=0有意義,則f(0)一定為0.(2)利用函數(shù)的單調(diào)性與奇偶性,將不等式不等式對任意的恒成立,轉(zhuǎn)化為t2-2t+3>1-k任意的t∈R恒成立是解題的關(guān)鍵。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分14分,第1小題6分,第2小題8分)
已知函數(shù),其中常數(shù)a > 0.
(1) 當a = 4時,證明函數(shù)f(x)在上是減函數(shù);
(2) 求函數(shù)f(x)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)
定義在上的函數(shù),對于任意的實數(shù),恒有,且當時,。
(1)求的值域。
(2)判斷上的單調(diào)性,并證明。
(3)設(shè),,求的范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(12分)已知函數(shù)為奇函數(shù),為常數(shù),
(1)求實數(shù)的值;
(2)證明:函數(shù)在區(qū)間上單調(diào)遞增;
(3)若對于區(qū)間上的每一個值,不等式恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

本題12分)
已知函數(shù).
(1)求的定義域;
(2)在函數(shù)的圖象上是否存在不同的兩點,使得過這兩點的直線平行于x軸;
(3)當,b滿足什么條件時,上恒取正值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

海事救援船對一艘失事船進行定位:以失事船的當前位置為原點,以正北方向為軸正方向建立平面直角坐標系(以1海里為單位長度),則救援船恰好在失事船正南方向12海里處,如圖,現(xiàn)假設(shè):①失事船的移動路徑可視為拋物線;②定位后救援船即刻沿直線勻速前往救援;③救援船出發(fā)小時后,失事船所在位置的橫坐標為

(1)當時,寫出失事船所在位置的縱坐標,若此時兩船恰好會合,求救援船速度的大小和方向 (若確定方向時涉及到的角為非特殊角,用符號及其滿足的條件表示即可)
(2)問救援船的時速至少是多少海里才能追上失事船?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知定義在(-∞,—1)∪(1,+∞)上的奇函數(shù)滿足:①f(3)=1;②對任意的x>2, 均有f(x)>0,③對任意的x>0,y>0.均有f(x+1)+f(y+1)=f(xy+1) 
⑴試求f(2)的值;
⑵證明f(x)在(1,+∞)上單調(diào)遞增;
⑶是否存在實數(shù)a,使得f(cos2θ+asinθ)<3對任意的θ(0,π)恒成立?若存在,請求出a的范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)
已知函數(shù)f (x)=loga(a>0,a≠1).
(1)求函數(shù)f (x)的定義域.
(2)求使f (x)>0的x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)
已知函數(shù),且.
(Ⅰ)求的值,并用分段函數(shù)的形式來表示;
(Ⅱ)在如圖給定的直角坐標系內(nèi)作出函數(shù)的草圖;

(III)由圖象寫出函數(shù)的奇偶性及單調(diào)區(qū)間.

查看答案和解析>>

同步練習(xí)冊答案