解答:解:(1)
f′(x)=,(x≠0),因?yàn)閍>0,所以由f'(x)>0,得0<x<2,此時(shí)函數(shù)單調(diào)遞增.
由f'(x)<0,得x>2或x<0,此時(shí)函數(shù)單調(diào)遞減.
所以函數(shù)f(x)的單調(diào)增區(qū)間為(-∞,0)和(2,+∞),單調(diào)遞減區(qū)間為(0,2).
(2)設(shè)切點(diǎn)坐標(biāo)為(x
0,y
0,則
,解得x
0=1,a=1.
(3)g(x)=xlnx-x
2f(x)=xlnx-a(x-1),
則g'(x)=lnx+1-a,由g'(x)=lnx+1-a=0,解得x=e
a-1.
所以在區(qū)間(0,e
a-1)上,函數(shù)單調(diào)遞減,在(e
a-1.,+∞)上,函數(shù)單調(diào)遞增.
①當(dāng)e
a-1.≤1,即0<a≤1時(shí),在區(qū)間[l,e]上g(x)單調(diào)遞增,所以g(x)的最小值為g(1)=0.
②當(dāng)e
a-1.≥e,即a≥2時(shí),在區(qū)間[l,e]上g(x)單調(diào)遞減,所以g(x)的最小值為g(e)=e+a-ae.
③當(dāng)1<e
a-1.<e,即1<a<2時(shí),g(x)的最小值為g(e
a-1.)=(a-1)e
a-1.-a(e
a-1.-1)=a-e
a-1..
綜上當(dāng)0<a≤1時(shí),g(x)的最小值為g(1)=0.
當(dāng)1<a<2時(shí),g(x)的最小值為g(e
a-1.),
當(dāng)≥2時(shí),g(x)的最小值為g(e)=e+a-ae.