在1與2之間插入n個正數(shù)a1,a2,a3,…,an,使這n+2個數(shù)成等比數(shù)列;又在1與2之間插入n個正數(shù)b1,b2,b3,…,bn,使這n+2個數(shù)成等差數(shù)列,記An=a1a2a3an,?Bn=b1+b2+…+bn.?求數(shù)列{An}和{Bn}的通項(xiàng).

解析:∵1,a1,a2,a3,…,an,2成等比數(shù)列,?

∴a1an=a2an-1=a3an-2=…=akan-k+1=…=1×2=2.?

∴An2=(a1an)(a2an-1)(a3an-2)…(an-1a2)(ana1)

=(1×2)n=2n.?

∴An=.?

∵1,b1,b2,b3,…,bn,2成等差數(shù)列,?

∴b1+bn=1+2=3.?

∴Bn=·n=n.?

∴數(shù)列{An}的通項(xiàng)An=,數(shù)列{Bn}的通項(xiàng)Bn=n.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在1與2之間插入n個正數(shù)a1,a2,a3,…,an,使這n+2個數(shù)成等比數(shù)列;又在1與2之間插入n個正數(shù)b1,b2,b3,…,bn,使這n+2個數(shù)成等差數(shù)列.記An=a1a2a3…an,Bn=b1+b2+b3+…+bn
(1)求數(shù)列{An}和{Bn}的通項(xiàng);
(2)當(dāng)n≥7時,比較An和Bn的大小,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在1與2之間插入n個正數(shù),使這n+2個數(shù)成等比數(shù)列;又在1與2之間插入n個正數(shù),使這n+2個數(shù)成等差數(shù)列。記,

。w.w.w.k.s.5.u.c.o.m    

(1)       求數(shù)列的通項(xiàng);(2)當(dāng)的大小關(guān)系(不需證明)。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在1與2之間插入n個正數(shù)a1,a2,a3,…,an,使這n+2個數(shù)成等比數(shù)列;又在1與2之間插入n個正數(shù)b1,b2,b3,…,bn,使這n+2個數(shù)成等差數(shù)列.記An=a1a2a3…an,Bn=b1+b2+b3+…+bn.

(1)求數(shù)列{An}和{Bn}的通項(xiàng);

(2)當(dāng)n≥7時,比較An與Bn的大小,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在1與2之間插入n個正數(shù)A1,A2,A3,…,An,使這n+2個數(shù)成等比數(shù)列;又在1與2之間插入n個正數(shù)B1,B2,B3,…,Bn,使這n+2個數(shù)成等差數(shù)列.記An=A1A2A3An,Bn=B1+B2+…+

Bn.

(1)求數(shù)列{An} 和{Bn}的通項(xiàng);

(2)當(dāng)n≥7時,比較AnBn的大小,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在1與2之間插入n個正數(shù)a1,a2,a3,…,an,使這n+2個數(shù)成等比數(shù)列;又在1與2之間插入n個正數(shù)b1,b2,b3,…,bn,使這n+2個數(shù)成等差數(shù)列.記An=a1a2a3…an,Bn=b1+b2+b3+…+bn.

(1)求數(shù)列{An} 和{Bn}的通項(xiàng);

(2)當(dāng)n≥7時,比較An與Bn的大小,并證明你的結(jié)論.

查看答案和解析>>

同步練習(xí)冊答案