(1)已知等差數(shù)列,(),求證:仍為等差數(shù)列;
(2)已知等比數(shù)列),類比上述性質(zhì),寫出一個(gè)真命題并加以證明.
(1)等差數(shù)列的定義運(yùn)用,根據(jù)相鄰兩項(xiàng)的差為定值,來(lái)證明。
(2)若為等比數(shù)列,(),,則為等比數(shù)列
解析試題分析:證明:(1), 2分
, 4分
為等差數(shù)列為常數(shù), 6分
所以仍為等差數(shù)列; 7分
(2)類比命題:若為等比數(shù)列,(),,則為等比數(shù)列
9分
證明:, 11分,為常數(shù), 13分為等比數(shù)列 14分
考點(diǎn):等差數(shù)列
點(diǎn)評(píng):考查了類比推理的運(yùn)用,以及等差數(shù)列的定義,屬于基礎(chǔ)題。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知各項(xiàng)均不相等的等差數(shù)列的前三項(xiàng)和為18,是一個(gè)與無(wú)關(guān)的常數(shù),若恰為等比數(shù)列的前三項(xiàng),(1)求的通項(xiàng)公式.(2)記數(shù)列,的前三項(xiàng)和為,求證:
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
數(shù)列滿足。
(Ⅰ)若是等差數(shù)列,求其通項(xiàng)公式;
(Ⅱ)若滿足, 為的前項(xiàng)和,求。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題共14分)
在單調(diào)遞增數(shù)列中,,不等式對(duì)任意都成立.
(Ⅰ)求的取值范圍;
(Ⅱ)判斷數(shù)列能否為等比數(shù)列?說(shuō)明理由;
(Ⅲ)設(shè),,求證:對(duì)任意的,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分12分)
已知數(shù)列中,,,且.
(1)設(shè),求是的通項(xiàng)公式;
(2)求數(shù)列的通項(xiàng)公式;
(3)若是與的等差中項(xiàng),求的值,并證明:對(duì)任意的,是與的等差中項(xiàng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知是一個(gè)等差數(shù)列,且,.
(Ⅰ)求的通項(xiàng); (Ⅱ)求前n項(xiàng)和Sn的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本題滿分14分)
已知是遞增的等差數(shù)列,.
(Ⅰ)求數(shù)列的通項(xiàng)公式;
(Ⅱ)若,求數(shù)列的前項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本題滿分14分)
已知數(shù)列為等差數(shù)列,公差,是數(shù)列的前項(xiàng)和, 且.
(1)求數(shù)列的通項(xiàng)公式;(2)令,求數(shù)列的前項(xiàng)和.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com