【題目】為了迎接旅游旺季的到來,少林寺設(shè)置了一個專門安排旅客住宿的客棧,寺廟的工作人員發(fā)現(xiàn)為游客準備的食物有些月份剩余不少,浪費很嚴重,為了控制經(jīng)營成本,減少浪費,就想適時調(diào)整投入.為此他們統(tǒng)計每個月入住的游客人數(shù),發(fā)現(xiàn)每年各個月份來客棧入住的游客人數(shù)會呈現(xiàn)周期性的變化,并且有以下規(guī)律:

①每年相同的月份,入住客棧的游客人數(shù)基本相同;

②入住客棧的游客人數(shù)在月份最少,在月份最多,相差約人;

月份入住客棧的游客約為人,隨后逐月增加直到月份達到最多.

1)試用一個正弦型三角函數(shù)描述一年中入住客棧的游客人數(shù)與月份之間的關(guān)系;

2)請問哪幾個月份要準備份以上的食物?

【答案】1;(2月、月、月、月、個月份.

【解析】

1)根據(jù)①,可知函數(shù)的最小正周期是;根據(jù)②可知,最小,最大,且;根據(jù)③可知,函數(shù)上單調(diào)遞增,且,由此可得函數(shù)的解析式;

2)由條件知,結(jié)合,,即可得到結(jié)論.

1)設(shè)該函數(shù)為

根據(jù)條件①,可知這個函數(shù)的周期是

由②可知,最小,最大,且

由③可知,函數(shù)上單調(diào)遞增,且,所以.

根據(jù)上述分析可得,,故,且,解得.

根據(jù)分析可知,當時,取最小值,當時,取最大值.

,且,又因為,故.

所以入住客棧的游客人數(shù)與月份之間的關(guān)系式為

2)令,化簡得,

,解得.

因為,且,所以、、、、,

即在月、月、月、月、個月份要準備份以上的食物.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】1)如果把棱柱中過不相鄰的兩條側(cè)棱的截面叫棱柱的對角面,則平行六面體的對角面的形狀是_______,直平行六面體的對角面的形狀是______

2)過正三棱柱底面的一邊和兩底面中心連線段的中點作截面,則這個截面的形狀為_____.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下圖是我國2008年至2014年生活垃圾無害化處理量(單位:億噸)的折線圖.

Ⅰ)由折線圖看出,可用線性回歸模型擬合yt的關(guān)系,請用相關(guān)系數(shù)加以說明;

Ⅱ)建立y關(guān)于t的回歸方程(系數(shù)精確到0.01),預測2016年我國生活垃圾無害化處理量.

附注:

參考數(shù)據(jù):,,

,≈2.646.

參考公式:相關(guān)系數(shù)

回歸方程中斜率和截距的最小二乘估計公式分別為:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】

如圖4,在四棱錐中,底面是矩形,

平面,,,于點

(1) 求證:

(2) 求直線與平面所成的角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在三棱臺ABC﹣A1B1C1中,D,E分別是AB,AC的中點,B1E⊥平面ABC,△AB1C是等邊三角形,AB=2A1B1,AC=2BC,∠ACB=90°.

(1)證明:B1C∥平面A1DE;

(2)求二面角A﹣BB1﹣C的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)、為雙曲線上的兩點,為線段的中點,線段的垂直平分線與雙曲線交于兩點

(1)確定的取值范圍

(2)試判斷、、四點是否共圓?并說明理由

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)fx)既是二次函數(shù)又是冪函數(shù),函數(shù)gx)是R上的奇函數(shù),函數(shù)=+1,則h(2018)+h(2017)+h(2016)+…+h(1)+h(0)+h(﹣1)+…h(﹣2016)+h(﹣2017)+h(﹣2018)=___________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了了解學生的學習情況,一次測試中,科任老師從本班中抽取了n個學生的成績(滿分100分,且抽取的學生成績均在內(nèi))進行統(tǒng)計分析.按照,,,,的分組作出頻率分布直方圖和頻數(shù)分布表.

頻數(shù)分布表

x

4

10

12

8

4

1)求n,ax的值;

2)在選取的樣本中,從低于60分的學生中隨機抽取兩名學生,試問這兩名學生在同一組的概率是多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知在四棱錐中,底面是邊長為4的正方形,是正三角形,平面平面,分別是的中點.

(1)求證:平面平面

(2)若是線段上一點,求三棱錐的體積.

查看答案和解析>>

同步練習冊答案