已知是定義在上的奇函數(shù),且當(dāng)時(shí),
(Ⅰ)求的解析式;
(Ⅱ)直接寫(xiě)出的單調(diào)區(qū)間(不需給出演算步驟);
(Ⅲ)求不等式解集.
(Ⅰ) ;(Ⅱ)遞增區(qū)間:,;
(Ⅲ):。

試題分析:(Ⅰ)當(dāng)時(shí),;
當(dāng)時(shí),則,,則
綜上:         7分
(Ⅱ)遞增區(qū)間:,       10分
(Ⅲ)當(dāng)時(shí),,即
當(dāng)時(shí),,即
當(dāng)時(shí),,恒成立
綜上,所求解集為:       15分
點(diǎn)評(píng):典型題,高一階段,此類(lèi)題目較為典型,利用分段函數(shù)的奇偶性,確定函數(shù)的解析式。解涉及分段函數(shù)不等式求解問(wèn)題,必須注意分段討論。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

 若,
使得成立,則實(shí)數(shù)的取值范圍是                。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

函數(shù)+1(a>0,a≠1)的圖象必經(jīng)過(guò)定點(diǎn) (   )
A.(0,1)B.(2,1)C.(2,2)D.(2,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

函數(shù)y = 1n|x-1|的圖像與函數(shù)y="-2" cos x(-2≤x≤4)的圖像所有交點(diǎn)的橫坐標(biāo)之和等于
A.8B.6 C.4D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿(mǎn)分13分)
(本小題滿(mǎn)分12分)某地方政府準(zhǔn)備在一塊面積足夠大的荒地上建一如圖所示的一個(gè)矩形綜合性休閑廣場(chǎng),其總面積為3000平方米,其中場(chǎng)地四周(陰影部分)為通道,通道寬度均為2米,中間的三個(gè)矩形區(qū)域?qū)佋O(shè)塑膠地面作為運(yùn)動(dòng)場(chǎng)地(其中兩個(gè)小場(chǎng)地形狀相同),塑膠運(yùn)動(dòng)場(chǎng)地占地面積為平方米.

(1)分別寫(xiě)出用表示和用表示的函數(shù)關(guān)系式(寫(xiě)出函數(shù)定義域);
(2)怎樣設(shè)計(jì)能使S取得最大值,最大值為多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

本小題滿(mǎn)分12分)
今有一長(zhǎng)2米寬1米的矩形鐵皮,如圖,在四個(gè)角上分別截去一個(gè)邊長(zhǎng)為x米的正方形后,沿虛線折起可做成一個(gè)無(wú)蓋的長(zhǎng)方體形水箱(接口連接問(wèn)題不考慮).

(Ⅰ)求水箱容積的表達(dá)式,并指出函數(shù)的定義域;
(Ⅱ)若要使水箱容積不大于立方米的同時(shí),又使得底面積最大,求x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本題滿(mǎn)分12分)通常情況下,同一地區(qū)一天的溫度隨時(shí)間變化的曲線接近于函數(shù)的圖像.2013年1月下旬荊門(mén)地區(qū)連續(xù)幾天最高溫度都出現(xiàn)在14時(shí),最高溫度為;最低溫度出現(xiàn)在凌晨2時(shí),最低溫度為零下.
(Ⅰ)請(qǐng)推理荊門(mén)地區(qū)該時(shí)段的溫度函數(shù)
的表達(dá)式;
(Ⅱ)29日上午9時(shí)某高中將舉行期末考試,如果溫度低于,教室就要開(kāi)空調(diào),請(qǐng)問(wèn)屆時(shí)學(xué)校后勤應(yīng)該送電嗎?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

對(duì)實(shí)數(shù),定義運(yùn)算“”: 設(shè)函數(shù),,若函數(shù)的圖像與軸恰有兩個(gè)公共點(diǎn),則實(shí)數(shù)的取值范圍是(  )                                                                           
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

奇函數(shù)在區(qū)間上是減函數(shù),則在區(qū)間上是
A.增函數(shù),且最大值為B.減函數(shù),且最大值為
C.增函數(shù),且最大值為D.減函數(shù),且最大值為

查看答案和解析>>

同步練習(xí)冊(cè)答案