分析 (I)討論x的范圍,去絕對值符號(hào)解出不等式;
(II)分別求出f(x),g(x)的最小值,令fmin(x)≥gmin(x)解出a的范圍.
解答 解:(Ⅰ)a=1時(shí),f(x)=|3x-1|+|3x-6|,
當(dāng)x≤$\frac{1}{3}$時(shí),不等式為:7-6x≥8,解得x≤-$\frac{1}{6}$,∴x≤-$\frac{1}{6}$,
當(dāng)$\frac{1}{3}$<x<2時(shí),不等式為:5≥8,無解,
當(dāng)x≥2時(shí),不等式為6x-7≥8,解得x≥$\frac{5}{2}$,∴x≥$\frac{5}{2}$,
綜上,f(x)≥8的解集是(-∞,-$\frac{1}{6}$]∪[$\frac{5}{2}$,+∞).
(Ⅱ)∵對任意x1∈R都有x2∈R,使得f(x1)=g(x2)成立,
∴fmin(x)≥gmin(x),
∵f(x)=|3x-a|+|3x-6|≥|3x-a-(3x-6)|=|6-a|,g(x)=|x-2|+1≥1,
∴|6-a|≥1,
解得a≥7,或a≤5.
點(diǎn)評(píng) 本題考查了絕對值不等式的解法,絕對值函數(shù)的最值計(jì)算,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 4 | B. | 0 | C. | 2 | D. | $2\sqrt{10}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ¬q | B. | (¬p)∨(¬q) | C. | p∧q | D. | p∧(¬q) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | f(4.5)<f(7)<f(6.5) | B. | f(7)<f(4.5)<f(6.5) | C. | f(7)<f(6.5)<f(4.5) | D. | f(4.5)<f(6.5)<f(7) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ¬p:?x∈R,log5x<0 | B. | ¬p:?x∈R,log5x≤0 | C. | ¬p:?x∈R,log5x≤0 | D. | ¬p:?x∈R,log5x<0 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com