【題目】(本題滿分15分)如圖,已知拋物線,點(diǎn)A,,拋物線上的點(diǎn).過點(diǎn)B作直線AP的垂線,垂足為Q.
(Ⅰ)求直線AP斜率的取值范圍;
(Ⅱ)求的最大值.
【答案】(Ⅰ)(-1,1);(Ⅱ)
【解析】本題主要考查直線方程、直線與拋物線的位置關(guān)系等基礎(chǔ)知識(shí),同時(shí)考查解析幾何的基本思想方法和運(yùn)算求解能力。滿分15分。
(Ⅰ)設(shè)直線AP的斜率為k,
k=,
因?yàn)?/span>,所以直線AP斜率的取值范圍是(-1,1)。
(Ⅱ)聯(lián)立直線AP與BQ的方程
解得點(diǎn)Q的橫坐標(biāo)是
因?yàn)?/span>|PA|==
|PQ|= =,
所以|PA||PQ|= -(k-1)(k+1)3
令f(k)= -(k-1)(k+1)3,
因?yàn)?/span>=,
所以 f(k)在區(qū)間(-1,)上單調(diào)遞增,(,1)上單調(diào)遞減,
因此當(dāng)k=時(shí),|PA||PQ| 取得最大值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,角A,B,C的對(duì)邊分別為a,b,c.已知 .
(1)求角A的大;
(2)若 ,求△ABC的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠ABC=90°,AB=4,BC=3,點(diǎn)D在線段AC上,且AD=4DC.
(Ⅰ)求BD的長(zhǎng);
(Ⅱ)求sin∠CBD的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某班同學(xué)利用寒假進(jìn)行社會(huì)實(shí)踐活動(dòng),對(duì)[25,55]歲的人群隨機(jī)抽取n人進(jìn)行了一次生活習(xí)慣是否符合低碳觀念的調(diào)查,若生活習(xí)慣符合低碳觀念的稱為“低碳族”,否則稱為“非低碳族”,得到如下統(tǒng)計(jì)表和各年齡段人數(shù)頻率分布直方圖:
組數(shù) | 分組 | 低碳族人數(shù) | 占本組的頻率 |
第一組 | [25,30) | 120 | 0.6 |
第二組 | [30,35) | 195 | p |
第三組 | [35,40) | 100 | 0.5 |
第四組 | [40,45) | a | 0.4 |
第五組 | [45,50) | 30 | 0.3 |
第六組 | [50,55) | 15 | 0.3 |
(1)補(bǔ)全頻率分布直方圖并求n、a、p的值;
(2)從年齡段在[40,50)的“低碳族”中采用分層抽樣法抽取6人參加戶外低碳體驗(yàn)活動(dòng),其中選取2人作為領(lǐng)隊(duì),求選取的2名領(lǐng)隊(duì)中恰有1人年齡在[40,45)歲的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在長(zhǎng)方形ABCD中,AB= ,BC=1,E為線段DC上一動(dòng)點(diǎn),現(xiàn)將△AED沿AE折起,使點(diǎn)D在面ABC上的射影K在直線AE上,當(dāng)E從D運(yùn)動(dòng)到C,則K所形成軌跡的長(zhǎng)度為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知等邊三角形的邊長(zhǎng)為4,四邊形為正方形,平面平面, , , , 分別是線段, , , 上的點(diǎn).
(Ⅰ)如圖①,若為線段的中點(diǎn), ,證明: 平面;
(Ⅱ)如圖②,若, 分別為線段, 的中點(diǎn), , ,求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某公司今年年初用25萬(wàn)元引進(jìn)一種新的設(shè)備,投入設(shè)備后每年收益為21萬(wàn)元.該公司第n年需要付出設(shè)備的維修和工人工資等費(fèi)用an的信息如圖.
(1)求an;
(2)引進(jìn)這種設(shè)備后,第幾年后該公司開始獲利;
(3)這種設(shè)備使用多少年,該公司的年平均獲利最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(本小題滿分13分)
如圖,在四棱錐中,平面,,,,,,.
(I)求異面直線與所成角的余弦值;
(II)求證:平面;
(II)求直線與平面所成角的正弦值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com