【題目】累計(jì)凈化量(CCM)是空氣凈化器質(zhì)量的一個(gè)重要衡量指標(biāo),它是指空氣凈化器從開始使用到凈化效率為時(shí)對(duì)顆粒物的累計(jì)凈化量(單位:克).根據(jù)國(guó)家標(biāo)準(zhǔn),對(duì)空氣凈化器的累計(jì)凈化量(CCM)有如下等級(jí)劃分:

計(jì)凈化量(克)

12以上

等級(jí)

已知某批空氣凈化器共臺(tái),其累計(jì)凈化量都分布在區(qū)間內(nèi),為了解其質(zhì)量,隨機(jī)抽取了臺(tái)凈化器作為樣本進(jìn)行估計(jì),按照,,均勻分組,其中累計(jì)凈化量在的所有數(shù)據(jù)有:,,,并繪制了如下頻率分布直方圖

1)求的值及頻率分布直方圖中的值;

2)以樣本估計(jì)總體,試估計(jì)這批空氣凈化器(共2000臺(tái))中等級(jí)為的空氣凈化器有多少臺(tái)?

3)從累計(jì)凈化量在的樣本中隨機(jī)抽取2臺(tái),求恰好有1臺(tái)等級(jí)為的概率.

【答案】見(jiàn)解析

【解析】1)因?yàn)?/span>內(nèi)的數(shù)據(jù)一共有6個(gè),

所以由頻率分布直方圖可知,落在內(nèi)的頻率為,因此,(2分)

,所以.(4分)

2)由頻率分布直方圖可知,落在內(nèi)的共臺(tái),

又在內(nèi)的共臺(tái),所以落在內(nèi)的共臺(tái),(6分)

故這批空氣凈化器中等級(jí)為的空氣凈化器約有臺(tái).(8分)

3)設(shè)恰好有臺(tái)等級(jí)為為事件,依題意,

內(nèi)的共有6臺(tái),記為,其中表示等級(jí)為臺(tái),

則從內(nèi)的6臺(tái)中隨機(jī)抽取2臺(tái),所有可能的結(jié)果為,,,,,,,,,,,共有15種,(10分)

而事件包含的結(jié)果為,,,,,,共有8種,

所以事件發(fā)生的概率為,故所求概率為.(12分)

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列{an}的前n項(xiàng)和Sn=﹣an﹣( n1+2(n∈N*),數(shù)列{bn}滿足bn=2nan . (Ⅰ)求證數(shù)列{bn}是等差數(shù)列,并求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè)cn=log2 ,數(shù)列{ }的前n項(xiàng)和為Tn , 求滿足Tn (n∈N*)的n的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知某中學(xué)高三文科班學(xué)生共有800人參加了數(shù)學(xué)與地理的水平測(cè)試,學(xué)校決定利用隨機(jī)數(shù)表法從中抽取100人進(jìn)行成績(jī)抽樣調(diào)查,先將800人按001,002,…,800進(jìn)行編號(hào)

(1)如果從第8行第7列的數(shù)開始向右讀,請(qǐng)你依次寫出最先檢查的3個(gè)人的編號(hào);(下面摘取了第7行到第9行)

84 42 17 53 31 57 24 55 06 88 77 04 74 47 67 21 76 33 50 25 83 92 12 06 76

63 01 63 78 59 16 95 56 67 19 98 10 50 71 75 12 86 73 58 07 44 39 52 38 79

33 21 12 34 29 78 64 56 07 82 52 42 07 44 38 15 51 00 13 42 99 66 02 79 54

(2)抽取的100人的數(shù)學(xué)與地理的水平測(cè)試成績(jī)?nèi)缦卤恚?/span>

成績(jī)分為優(yōu)秀、良好、及格三個(gè)等級(jí);橫向,縱向分別表示地理成績(jī)與數(shù)學(xué)成績(jī),例如:表中數(shù)學(xué)成績(jī)?yōu)榱己玫墓灿?/span>.

①若在該樣本中,數(shù)學(xué)成績(jī)優(yōu)秀率是30%,求的值:

人數(shù)

數(shù)學(xué)

優(yōu)秀

良好

及格

地理

優(yōu)秀

7

20

5

良好

9

18

6

及格

4

②在地理成績(jī)及格的學(xué)生中,已知, ,求數(shù)學(xué)成績(jī)優(yōu)秀的人數(shù)比及格的人數(shù)少的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,水平放置的正四棱柱形玻璃容器Ⅰ和正四棱臺(tái)形玻璃容器Ⅱ的高均為32cm,容器Ⅰ的底面對(duì)角線AC的長(zhǎng)為10cm,容器Ⅱ的兩底面對(duì)角線,的長(zhǎng)分別為14cm62cm.分別在容器Ⅰ和容器Ⅱ中注入水,水深均為12cm現(xiàn)有一根玻璃棒l,其長(zhǎng)度為40cm.(容器厚度、玻璃棒粗細(xì)均忽略不計(jì))

(1)將放在容器Ⅰ中,的一端置于點(diǎn)A處另一端置于側(cè)棱上,沒(méi)入水中部分的長(zhǎng)度;

(2)將放在容器Ⅱ中,的一端置于點(diǎn)E處,另一端置于側(cè)棱上,求沒(méi)入水中部分的長(zhǎng)度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四棱錐P﹣ABCD中,底面ABCD為矩形,PA⊥平面ABCD,E為PD的中點(diǎn).

(1)證明:PB∥平面AEC;
(2)設(shè)AP=1,AD= ,三棱錐P﹣ABD的體積V= ,求A到平面PBC的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,O為等腰三角形ABC內(nèi)一點(diǎn),⊙O與△ABC的底邊BC交于M,N兩點(diǎn),與底邊上的高AD交于點(diǎn)G,且與AB,AC分別相切于E,F(xiàn)兩點(diǎn).

(1)證明:EF∥BC;
(2)若AG等于⊙O的半徑,且AE=MN=2 ,求四邊形EBCF的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】

已知函數(shù)

(1)若曲線在點(diǎn)處的切線與直線垂直,求的值;

(2)若存在極小值時(shí),不等式恒成立,求實(shí)數(shù)的取值范圍;

(3)當(dāng)時(shí),如果存在兩個(gè)不相等的正數(shù),使得,求證:

請(qǐng)考生在第22、23兩題中任選一題作答.注意:只能做所選定的題目.如果多做,則按所做的第一個(gè)題目計(jì)分.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=x2﹣2|x|﹣3a
(1)當(dāng)a=1時(shí),在所給坐標(biāo)系中,畫出函數(shù)f(x)的圖象,并求f(x)的單調(diào)遞增區(qū)間
(2)若直線y=1與函數(shù)f(x)的圖象有4個(gè)交點(diǎn),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知集合A={x|x2-6x+8<0},B={x|(xa)(x-3a)<0}.

(1)若xAxB的充分條件,求a的取值范圍;

(2)若AB,求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案