如果橢圓
x2
36
+
y2
9
=1
的弦AB被點(diǎn)M(x0,y0)平分,設(shè)直線AB的斜率為k1,直線OM(O為坐標(biāo)原點(diǎn))的斜率為k2,則k1•k2=( 。
A.4B.
1
4
C.-1D.-
1
4
設(shè)直線AB方程為y=k1x+b,A(x1,y1),B(x2,y2),
代入橢圓方程并整理得:
(1+4k12)x2+8k1bx+4b2-36=0,
x1+x2=-
8k1b
1+4k12
,
又中點(diǎn)M在直線上,
y1+y2
2
=k1
x1+x2
2
)+b,
從而得弦中點(diǎn)M的坐標(biāo)為(-
4k1b
1+4k12
,
b
1+4k12
),
k2=-
b
1+4k12
4k1b
1+4k2
=-
1
4k1
,
∴k1k2=-
1
4

故選D.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

過(2,0)點(diǎn)且傾斜角為60°的直線與橢圓
x2
5
+
y2
3
=1
相交于A,B兩點(diǎn),則AB中點(diǎn)的坐標(biāo)為______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知點(diǎn)P(-1,
3
2
)
是橢圓E:
x2
a2
+
y2
b2
=1
(a>b>0)上一點(diǎn),F(xiàn)1、F2分別是橢圓E的左、右焦點(diǎn),O是坐標(biāo)原點(diǎn),PF1⊥x軸.
(1)求橢圓E的方程;
(2)設(shè)A、B是橢圓E上兩個(gè)動(dòng)點(diǎn),是否存在λ,滿足
PA
+
PB
PO
(0<λ<4,且λ≠2),且M(2,1)到AB的距離為
5
?若存在,求λ值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)的離心率為
2
2
,F(xiàn)1,F(xiàn)2分別是橢圓的左、右焦點(diǎn),過點(diǎn)F2與x軸不垂直的直線l交橢圓于A、B兩點(diǎn),則△ABF1的周長為4
2

(1)求橢圓的方程;
(2)若C(
1
3
,0),使得|AC|=|BC|,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,將圓p:x2+y2=4上任意一點(diǎn)P′的縱坐標(biāo)變?yōu)樵瓉淼囊话耄M坐標(biāo)不變),得到點(diǎn)P,并設(shè)點(diǎn)P的軌跡為曲線C.
(1)求C的方程;
(2)設(shè)o為坐標(biāo)原點(diǎn),過點(diǎn)Q(
3
,0)的直線l與曲線C交于兩點(diǎn)A,B,線段AB的中點(diǎn)為N,且
OE
=2
ON
,點(diǎn)E在曲線C上,求直線l:
x
a
+
y
b
=1
的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓C的焦點(diǎn)在x軸上,O為坐標(biāo)原點(diǎn),F(xiàn)是一個(gè)焦點(diǎn),A是一個(gè)頂點(diǎn).若橢圓的長軸長是6,且cos∠OFA=
2
3

(Ⅰ)求橢圓C的方程;
(Ⅱ)求點(diǎn)R(0,1)與橢圓C上的點(diǎn)N之間的最大距離;
(Ⅲ)設(shè)Q是橢圓C上的一點(diǎn),過Q的直線l交x軸于點(diǎn)P(-3,0),交y軸于點(diǎn)M.若
MQ
=2
QP
,求直線l的斜率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

斜率為2的直線l與雙曲線
x2
3
-
y2
2
=1
交于A,B兩點(diǎn),且|AB|=4,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知焦點(diǎn)在x軸上的橢圓
x2
20
+
y2
b2
=1(b>0)
經(jīng)過點(diǎn)M(4,1),直線l:y=x+m交橢圓于A,B兩不同的點(diǎn).
(1)求該橢圓的標(biāo)準(zhǔn)方程;
(2)求實(shí)數(shù)m的取值范圍;
(3)是否存在實(shí)數(shù)m,使△ABM為直角三角形,若存在,求出m的值,若不存,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

點(diǎn)P(4,4),圓C:(x-1)2+y2=5與橢圓E:
x2
18
+
y2
2
=1
有一個(gè)公共點(diǎn)A(3,1),F(xiàn)1、F2分別是橢圓左、右焦點(diǎn),直線PF1與圓C相切.設(shè)Q為橢圓E上的一個(gè)動(dòng)點(diǎn),求
AP
AQ
的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案