【題目】如圖,在圓錐PO中,已知,圓O的直徑,C是弧AB的中點(diǎn),D為AC的中點(diǎn).
(1)求異面直線PD和BC所成的角的正切值;
(2)求直線OC和平面PAC所成角的正弦值.
【答案】(1)2;(2)
【解析】
試題(1)異面直線所成的角,往往通過平移轉(zhuǎn)化到一個(gè)三角形內(nèi)求解.本題轉(zhuǎn)化到直角三角形PDO中求解.(2)直線與平面所成的角,應(yīng)先作出直線在平面內(nèi)的射影,則斜線與射影所成的角即為所求.本題過點(diǎn)O向平面PAC作垂線,則即為直線與平面所成的角,進(jìn)而求出其正弦值.
試題解析:(1)O,D分別是AB和AC的中點(diǎn)
OD//BC
異面直線PD和BC所成的角為∠PDO
在△ABC中,的中點(diǎn)
又
(2)因?yàn)?/span>
又所以
又所以平面在平面中,過作
則連結(jié),則是上的射影,
所以是直線和平面所成的角.
在
在
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)直線l1 , l2分別是函數(shù)f(x)= 圖象上點(diǎn)P1 , P2處的切線,l1與l2垂直相交于點(diǎn)P,且l1 , l2分別與y軸相交于點(diǎn)A,B,則△PAB的面積的取值范圍是( 。
A.(0,1)
B.(0,2)
C.(0,+∞)
D.(1,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在如圖所示的圓臺中,AC是下底面圓O的直徑,EF是上底面圓O′的直徑,F(xiàn)B是圓臺的一條母線.
(1)已知G,H分別為EC,F(xiàn)B的中點(diǎn),求證:GH∥平面ABC;
(2)已知EF=FB= AC=2 AB=BC,求二面角F﹣BC﹣A的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=loga(a>0且a≠1).
(1)求f(x)的定義域;
(2)當(dāng)0<a<1時(shí),判斷f(x)在(2,+∞)的單惆性;
(3)是否存在實(shí)數(shù)a,使得當(dāng)f(x)的定義域?yàn)閇m,n]時(shí),值域?yàn)閇1+logan,1+1ogam],若存在,求出實(shí)數(shù)a的范圍;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】有一塊正方形EFGH,EH所在直線是一條小河,收獲的蔬菜可送到F點(diǎn)或河邊運(yùn)走.于是,菜地分別為兩個(gè)區(qū)域S1和S2 , 其中S1中的蔬菜運(yùn)到河邊較近,S2中的蔬菜運(yùn)到F點(diǎn)較近,而菜地內(nèi)S1和S2的分界線C上的點(diǎn)到河邊與到F點(diǎn)的距離相等,現(xiàn)建立平面直角坐標(biāo)系,其中原點(diǎn)O為EF的中點(diǎn),點(diǎn)F的坐標(biāo)為(1,0),如圖
(1)求菜地內(nèi)的分界線C的方程;
(2)菜農(nóng)從蔬菜運(yùn)量估計(jì)出S1面積是S2面積的兩倍,由此得到S1面積的經(jīng)驗(yàn)值為 .設(shè)M是C上縱坐標(biāo)為1的點(diǎn),請計(jì)算以EH為一邊,另一邊過點(diǎn)M的矩形的面積,及五邊形EOMGH的面積,并判斷哪一個(gè)更接近于S1面積的經(jīng)驗(yàn)值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】用數(shù)字1,2,3,4,5組成沒有重復(fù)數(shù)字的五位數(shù),其中奇數(shù)的個(gè)數(shù)為( )
A.24
B.48
C.60
D.72
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在區(qū)間[0,1]上給定曲線y=x2.試在此區(qū)間內(nèi)確定點(diǎn)t的值,使圖中的陰影部分的面積S1與S2之和最小,并求最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù).
(1)若函數(shù)在上為減函數(shù),求實(shí)數(shù)的最小值;
(2)若存在,使成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com