14、已知m、n是兩條不同的直線,α、β是兩個(gè)不同的平面,有下列命題:
①若m?α,n∥α,則m∥n;②若m∥α,m∥β,則α∥β;
③若m⊥α,m⊥n,則n∥α;④若m⊥α,m⊥β,則α∥β;
其中真命題的個(gè)數(shù)是
1個(gè)
分析:在空間中:①由m?α,n∥α,知m,n可能平行,或異面;②由m∥α,m∥β,可得α,β平行,或相交;③由m⊥α,m⊥n,可得n∥α,或n?α;④由m⊥α,m⊥β,可得α∥β;綜合可得答案.
解答:解:①是假命題,因?yàn)楫?dāng)m?α,n∥α?xí)r,直線m,n不一定平行;
②是假命題,因?yàn)楫?dāng)m∥α,m∥β時(shí),平面α,β可能平行,也可能相交;
③是假命題,因?yàn)楫?dāng)m⊥α,m⊥n時(shí),不一定有n∥α,也可能是n?α;
④是真命題,因?yàn)楫?dāng)m⊥α,m⊥β時(shí),由垂直與同一條直線的兩個(gè)平面平行,得α∥β;
所以,真命題只有1個(gè).
故答案為:1個(gè).
點(diǎn)評(píng):本題通過(guò)幾何符號(hào)語(yǔ)言,考查了空間中的線線,線面,面面平行和垂直關(guān)系,是基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

10、已知m,n是兩條不同的直線,α是一個(gè)平面,有下列四個(gè)命題:
①①若m∥α,n∥α,則m∥n;②若m⊥α,n⊥α,則m∥n;
③若m∥α,n⊥α,則m⊥n;④若m⊥α,m⊥n,則n∥α.
其中真命題的序號(hào)有
②③
. (請(qǐng)將真命題的序號(hào)都填上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

4、已知m、n是兩條不同直線,α、β、γ是三個(gè)不同平面,以下有三種說(shuō)法:
①若α∥β,β∥γ,則γ∥α; ②若α⊥γ,β∥γ,則α⊥β;
③若m⊥β,m⊥n,n?β,則n∥β.
其中正確命題的個(gè)數(shù)是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

6、已知m,n是兩條不同的直線,α,β,γ是三個(gè)不同的平面,則下列命題正確的是

①若α⊥γ,α⊥β,則γ∥β      ②若m∥n,m?α,n?β,則α∥β
③若m∥n,m∥α,則n∥α      ④若n⊥α,n⊥β,則α∥β

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•惠州模擬)已知m,n是兩條不同直線,α,β,γ是三個(gè)不同平面,下列命題中正確的有

①若m∥α,n∥α,則m∥n;               ②若α⊥γ,β⊥γ,則α∥β;
③若m∥α,m∥β,則α∥β;               ④若m⊥α,n⊥α,則m∥n.

查看答案和解析>>

同步練習(xí)冊(cè)答案