【題目】已知函數(shù)f(x)=eax﹣x﹣1,其中a≠0.若對(duì)一切x∈R,f(x)≥0恒成立,則a的取值集合

【答案】{1}
【解析】解:若a<0,則對(duì)一切x>0,∵eax<1,∴f(x)=eax﹣x﹣1<0,這與題設(shè)矛盾.又a≠0,故a>0.
而f′(x)=aeax﹣1,令f′(x)=0得x= ln ,
當(dāng)x< ln 時(shí),f′(x)<0,f(x)單調(diào)遞減;
當(dāng)x> ln 時(shí),f′(x)>0,f(x)單調(diào)遞增.
∴當(dāng)x= ln ,f(x)取最小值f( ln )= ln ﹣1.
于是對(duì)一切x∈R,f(x)≥0恒成立,當(dāng)且僅當(dāng) ln ﹣1≥0.①
令g(t)=t﹣tlnt﹣1,(t= )則g′(t)=﹣lnt,
當(dāng)0<t<1時(shí),g′(t)>0,g(t)單調(diào)遞增;
當(dāng)t>1時(shí),g′(t)<0,g(t)單調(diào)遞減,
∴當(dāng)t=1時(shí),g(t)取最大值g(1)=1﹣1=0.
∴當(dāng)且僅當(dāng) =1,即a=1時(shí),①式等號(hào)成立.
綜上所述,a的取值集合為{1}.
所以答案是:{1}.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解函數(shù)的最大(小)值與導(dǎo)數(shù)的相關(guān)知識(shí),掌握求函數(shù)上的最大值與最小值的步驟:(1)求函數(shù)內(nèi)的極值;(2)將函數(shù)的各極值與端點(diǎn)處的函數(shù)值,比較,其中最大的是一個(gè)最大值,最小的是最小值.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在菱形ABCD中,∠BAD=60°,線(xiàn)段AD,BD的中點(diǎn)分別為E,F(xiàn).現(xiàn)將△ABD沿對(duì)角線(xiàn)BD翻折,則異面直線(xiàn)BE與CF所成角的取值范圍是(

A.( ,
B.( ]
C.( , ]
D.(

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知定義在區(qū)間(﹣1,1)上的增函數(shù)f(x)= 為奇函數(shù),且f( )=
(1)求函數(shù)f(x)的解析式;
(2)解關(guān)于t的不等式f(t﹣1)+f(t)<0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】樣本中共有五個(gè)個(gè)體,其值分別為a,0,1,2,3.若該樣本的平均值為1,則樣本方差為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若x>0,則函數(shù) 與y2=logax(a>0,且a≠1)在同一坐標(biāo)系上的部分圖象只可能是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知向量 =(cosωx﹣sinωx,sinωx), =(﹣cosωx﹣sinωx,2 cosωx),設(shè)函數(shù)f(x)= +λ(x∈R)的圖象關(guān)于直線(xiàn)x=π對(duì)稱(chēng),其中ω,λ為常數(shù),且ω∈( ,1)
(1)求函數(shù)f(x)的最小正周期;
(2)若y=f(x)的圖象經(jīng)過(guò)點(diǎn)( ,0)求函數(shù)f(x)在區(qū)間[0, ]上的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,直線(xiàn)l的參數(shù)方程 (t為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,曲線(xiàn)C的極坐標(biāo)方程為:ρ=4cosθ.
(1)把直線(xiàn)l的參數(shù)方程化為極坐標(biāo)方程,把曲線(xiàn)C的極坐標(biāo)方程化為普通方程;
(2)求直線(xiàn)l與曲線(xiàn)C交點(diǎn)的極坐標(biāo)(ρ≥0,0≤θ<2π).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在直三棱柱ABC﹣A1B1C1中,∠ACB=90°,AA1=2,AC=BC=1,則異面直線(xiàn)A1B與AC所成角的余弦值是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)A,B是單位圓O上的兩點(diǎn),A,B點(diǎn)分別在第一,而象限,點(diǎn)C是圓O與x軸正半軸的交點(diǎn),若∠COA=60°,∠AOB=α,點(diǎn)B的坐標(biāo)為(﹣ , ).
(1)求sinα的值;
(2)已知?jiǎng)狱c(diǎn)P沿圓弧從C點(diǎn)到A點(diǎn)勻速運(yùn)動(dòng)需要2秒鐘,求動(dòng)點(diǎn)P從A點(diǎn)開(kāi)始逆時(shí)針?lè)较蜃鲌A周運(yùn)動(dòng)時(shí),點(diǎn)P的縱坐標(biāo)y關(guān)于時(shí)間t(秒)的函數(shù)關(guān)系式.

查看答案和解析>>

同步練習(xí)冊(cè)答案