【題目】已知各項(xiàng)均為正數(shù)的數(shù)列{an}滿(mǎn)足:Sn為數(shù)列{an}的前n項(xiàng)和,且2,an , Sn成等差數(shù)列.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若cn=nan , 求數(shù)列{cn}的前n項(xiàng)和Tn .
【答案】
(1)解:∵2,an,Sn成等差數(shù)列.
∴2an=Sn+2,
∴n=1,2a1=a1+2,解得a1=2;
當(dāng)n≥2時(shí),2an﹣1=Sn﹣1+2,∴2an﹣2an﹣1=an,化為an=2an﹣1,
∴數(shù)列{an}成等比數(shù)列,首項(xiàng)為2,公比為2,
∴an=2n.
(2)解:cn=nan=n2n.
∴數(shù)列{cn}的前n項(xiàng)和Tn=2+2×22+3×22+…+n2n,
2Tn=22+2×23+…+(n﹣1)2n+n2n+1,
∴﹣Tn=2+22+23+…+2n﹣n2n+1= ﹣n2n+1=(1﹣n)2n+1﹣2,
∴Tn=(n﹣1)2n+1+2.
【解析】(1)由2,an , Sn成等差數(shù)列.可得2an=Sn+2,再利用遞推關(guān)系、等比數(shù)列的通項(xiàng)公式即可得出;(2)利用“錯(cuò)位相減法”與等比數(shù)列的前n項(xiàng)和公式即可得出.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用數(shù)列的前n項(xiàng)和和數(shù)列的通項(xiàng)公式的相關(guān)知識(shí)可以得到問(wèn)題的答案,需要掌握數(shù)列{an}的前n項(xiàng)和sn與通項(xiàng)an的關(guān)系;如果數(shù)列an的第n項(xiàng)與n之間的關(guān)系可以用一個(gè)公式表示,那么這個(gè)公式就叫這個(gè)數(shù)列的通項(xiàng)公式.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在四面體ABCD中,已知∠ADB=∠BDC=∠CDA=60°,AD=BD=3,CD=2,則四面體ABCD的外界球的半徑為( )
A.
B.2
C.3
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】購(gòu)買(mǎi)一件售價(jià)為5 000元的商品,采用分期付款的辦法,每期付款數(shù)相同,購(gòu)買(mǎi)后1個(gè)月付款一次,過(guò)1個(gè)月再付款一次,如此下去,到第12次付款后全部付清.如果月利率為0.8%,每月利息按復(fù)利計(jì)算(上月利息計(jì)入下月本金),那么每期應(yīng)付款多少元?(精確到1元)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,ABCD為矩形,PA⊥平面ABCD,PA=AD,M,N,Q分別是PC,AB,CD的中點(diǎn).
求證:(1)MN∥平面PAD;
(2)平面QMN∥平面PAD.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)y=f(x﹣1)的圖象關(guān)于直線(xiàn)x=1對(duì)稱(chēng),且當(dāng)x∈(﹣∞,0)時(shí),f(x)+xf′(x)<0成立若a=(20.2)f(20.2),b=(1n2)f(1n2),c=( )f( ),則a,b,c的大小關(guān)系是( )
A.a>b>c
B.b>a>c
C.c>a>b
D.a>c>b
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
(1)當(dāng)a=1時(shí),求函數(shù)f(x)在[1,e]上的最小值和最大值;
(2)當(dāng)a≤0時(shí),討論函數(shù)f(x)的單調(diào)性;
(3)是否存在實(shí)數(shù)a,對(duì)任意的x1,x2(0,+∞),且x1≠x2,都有恒成立.若存在,求出a的取值范圍;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)分別為橢圓的左、右焦點(diǎn),點(diǎn)為橢圓的左頂點(diǎn),點(diǎn)為橢圓的上頂點(diǎn),且.
(1)若橢圓的離心率為,求橢圓的方程;
(2)設(shè)為橢圓上一點(diǎn),且在第一象限內(nèi),直線(xiàn)與軸相交于點(diǎn),若以為直徑的圓經(jīng)過(guò)點(diǎn),證明:點(diǎn)在直線(xiàn)上.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知命題:若m>2,則方程x2+2x+3m=0無(wú)實(shí)根,寫(xiě)出該命題的逆命題、否命題和逆否命題,并判斷真假.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】朱世杰是歷史上最偉大的數(shù)學(xué)家之一,他所著的《四元玉鑒》卷中“如像招數(shù)”五問(wèn)中有如下問(wèn)題:“今有官司差夫一千八百六十四人筑堤,只云初日差六十四人,次日轉(zhuǎn)多七人,每人日支米三升”。其大意為“官府陸續(xù)派遣1864人前往修筑堤壩,第一天派出64人,從第二天開(kāi)始每天派出的人數(shù)比前一天多7人,修筑堤壩的每人每天分發(fā)大米3升”,在該問(wèn)題中第3天共分發(fā)大米( )
A. 192升 B. 213升 C. 234升 D. 255升
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com