如圖:四邊形是梯形,,,三角形是等邊三角形,且平面 平面,,

(1)求證:平面;
(2)求二面角的余弦值.
(1)詳見解析;(2)

試題分析:(1)依據(jù)直線和平面平行的判定定理,要證明平面,只需在平面內找一條直線與之平行,連接,連接,易證,故,進而證明平面(2)以所在的直線,過點垂直于面的直線分別為軸,建立空間直角坐標系,求相關點的坐標,再求半平面的法向量,再求兩個法向量的夾角的余弦值,進而可得二面角的余弦值.

試題解析:解:(1)連接,連接., 即
, ,平面,,
平面.
(2) 如圖建立空間坐標系,


 ,設平面的法向量為,-                      
設平面的法向量為,,所以二面角的余弦值為.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,在三棱錐中,平面,,為側棱上一點,它的正(主)視圖和側(左)視圖如圖所示.

(1)證明:平面;
(2)在的平分線上確定一點,使得平面,并求此時的長.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,是等邊三角形,,將沿折疊到的位置,使得

(1)求證:;
(2)若,分別是,的中點,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知直線和平面,若,,過點且平行于的直線(   )
A.只有一條,不在平面B.有無數(shù)條,一定在平面
C.只有一條,且在平面D.有無數(shù)條,不一定在平面

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知α,β,γ是三個不同的平面,α∩γ=m,β∩γ=n.則(   )
A.若m⊥n,則α⊥βB.若α⊥β,則m⊥n
C.若m∥n,則α∥βD.若α∥β,則m∥n

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

下列各圖中,、為正方體的兩個頂點,、、分別為其所在棱的中點,能得出//平面的圖形的序號是                

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

如圖,直線平面,垂足為,直線是平面的一條斜線,斜足為,其中,過點的動直線交平面于點,,則下列說法正確的是___________.

①若,則動點B的軌跡是一個圓;
②若,則動點B的軌跡是一條直線;
③若,則動點B的軌跡是拋物線;
,則動點B的軌跡是橢圓;
,則動點B的軌跡是雙曲線.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

在底面為正方形的長方體上任意選擇4個頂點,它們可能是如下各種幾何形體的4個頂點,這些幾何形體是            (寫出所有正確結論的編號)
①矩形;②不是矩形的平行四邊形;③有三個面為直角三角形,有一個面為等腰三角形的四面體;④每個面都是等腰三角形的四面體;⑤每個面都是直角三角形的四面體.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知三條不重合的直線和兩個不重合的平面α、β,下列命題中正確命題個數(shù)為(  )
①若


A.1B.2C.3D.4

查看答案和解析>>

同步練習冊答案