精英家教網 > 高中數學 > 題目詳情

(本小題15分)已知橢圓的右焦點恰好是拋物線的焦點,

是橢圓的右頂點.過點的直線交拋物線兩點,滿足,

其中是坐標原點.

(1)求橢圓的方程;

(2)過橢圓的左頂點軸平行線,過點軸平行線,直線

相交于點.若是以為一條腰的等腰三角形,求直線的方程.

(本小題15分)

(1),,,設直線代入中,

整理得。設,則,

, 由    

,  解得  (舍),得

所以橢圓的方程為.                     (7分)

(2)橢圓的左頂點,所以點. 易證三點共線.[來源:Zxxk.Com]

(I)當為等腰的底邊時,由于是線段的中點,

,所以,即直線的方程為;        (11分)

 (II) 當為等腰的底邊時,   又,[來源:學+科+網]

     解得,  

所以直線的方程為,即;       (15分)

綜上所述,當為等腰三角形時,直線的方程為


解析:

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

(本小題15分)已知函數

(1)若函數處有極值為,求的值;

(2)若對任意,上單調遞增,求的最小值.

查看答案和解析>>

科目:高中數學 來源:寧波市2010屆高三三?荚囄目茢祵W試題 題型:解答題

(本小題15分)已知函數
(1)若函數處有極值為,求的值;
(2)若對任意,上單調遞增,求的最小值.

查看答案和解析>>

科目:高中數學 來源:全國高中數學聯(lián)合競賽一試 題型:解答題

(本小題15分)已知是實數,方程有兩個實根,數列滿足,
(Ⅰ)求數列的通項公式(用,表示);
(Ⅱ)若,,求的前項和.

查看答案和解析>>

科目:高中數學 來源:寧波市2010屆高三三?荚囄目茢祵W試題 題型:解答題

(本小題15分)已知拋物線,過點的直線交拋物線兩點,且
(1)求拋物線的方程;
(2)過點軸的平行線與直線相交于點,若是等腰三角形,求直線的方程.

查看答案和解析>>

科目:高中數學 來源:2013屆浙江省高二下學期第二次月考數學試卷(解析版) 題型:解答題

(本小題15分)已知函數f(x)=(1+x)2-aln(1+x)2在(-2,-1)上是增函數,

在(-∞,-2)上為減函數.

(1)求f(x)的表達式;

(2)若當x∈時,不等式f(x)<m恒成立,求實數m的值;

(3)是否存在實數b使得關于x的方程f(x)=x2+x+b在區(qū)間[0,2]上恰好有兩個相異的實根,若存在,求實數b的取值范圍.

 

查看答案和解析>>

同步練習冊答案