【題目】手機中的“運動”具有這樣的功能,不僅可以看自己每天的運動步數(shù),還可以看到朋友圈里好友的步數(shù).小明的朋友圈里有大量好友參與了“運動”,他隨機選取了其中30名,其中男女各15名,記錄了他們某一天的走路步數(shù),統(tǒng)計數(shù)據(jù)如下表所示:

0

2

4

7

2

1

3

7

3

1

(Ⅰ)以樣本估計總體,視樣本頻率為概率,在小明朋友圈里的男性好友中任意選取3名,其中走路步數(shù)低于7500步的有名,求的分布列和數(shù)學(xué)期望;

(Ⅱ)如果某人一天的走路步數(shù)超過7500步,此人將被“運動”評定為“積極型”,否則為“消極型”.根據(jù)題意完成下面的列聯(lián)表,并據(jù)此判斷能否有以上的把握認為“評定類型”與“性別”有關(guān)?

積極型

消極型

總計

總計

附:.

0.10

0.05

0.025

0.01

2.706

3.841

5.024

6.635

【答案】(Ⅰ)見解析;(Ⅱ)見解析

【解析】試題分析:

(Ⅰ)由題意得在小明的男性好友中任意選取1名,其中走路步數(shù)低于7500的概率為

然后根據(jù)題意可得的所有可能取值分別為0,1,2,3,分別求出概率后可得的分布列,然后可求得期望.(Ⅱ)結(jié)合題意可完成列聯(lián)表,由表中數(shù)據(jù)得到,故可得沒有以上的把握認為“評定類型”與“性別”有關(guān).

試題解析:

(Ⅰ)在小明的男性好友中任意選取1名,其中走路步數(shù)低于7500的概率為.

由題意得的所有可能取值分別為0,1,2,3,

,

,

故隨機變量的分布列為

0

1

2

3

.

(Ⅱ)完成列聯(lián)表

積極型

消極型

總計

9

6

15

4

11

15

總計

13

17

30

由表中數(shù)據(jù)可得 .

∴沒有以上的把握認為“評定類型”與“性別”有關(guān).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校學(xué)生社團心理學(xué)研究小組在對學(xué)生上課注意力集中情況的調(diào)查研究中,發(fā)現(xiàn)其在40分鐘的一節(jié)課中,注意力指數(shù)與聽課時間(單位:分鐘)之間的關(guān)系滿足如圖所示的曲線.當(dāng)時,曲線是二次函數(shù)圖象的一部分,當(dāng)時,曲線是函數(shù)圖象的一部分.根據(jù)專家研究,當(dāng)注意力指數(shù)大于80時學(xué)習(xí)效果最佳.

(1)試求的函數(shù)關(guān)系式;

(2)教師在什么時段內(nèi)安排核心內(nèi)容,能使得學(xué)生學(xué)習(xí)效果最佳?請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對于函數(shù)fx),若fx)的圖象上存在關(guān)于原點對稱的點,則稱fx)為定義域上的偽奇函數(shù)

1)若fx)=ln2x+1+m是定義在區(qū)間[1,1]上的偽奇函數(shù),求實數(shù)m的取值范圍;

2)試討論fx)=4xm2x+2+4m23R上是否為偽奇函數(shù)?并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在三棱臺中,點上,且,點內(nèi)(含邊界)的一個動點,且有平面平面,則動點的軌跡是( )

A. 平面B. 直線C. 線段,但只含1個端點D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,以原點為極點,x軸的正半軸為極軸建立極坐標(biāo)系,已知曲線Ca0),過點P(-2,-4)的直線l的參數(shù)方程為t為參數(shù)),lC分別交于MN.

1)寫出C的平面直角坐標(biāo)系方程和l的普通方程;

2)若|PM||MN|,|PN|成等比數(shù)列,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線E:的準(zhǔn)線為,焦點為,為坐標(biāo)原點。

(1)求過點、,且與相切的圓的方程;

(2)過點的直線交拋物線E于兩點,點A關(guān)于x軸的對稱點為,且點與點不重合,求證:直線過定點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的方程為,在橢圓上,橢圓的左頂點為,左、右焦點分別為,的面積是的面積的倍.

(1)求橢圓的方程;

(2)直線)與橢圓交于,連接并延長交橢圓,,連接,指出之間的關(guān)系,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】《九章算術(shù)》是我國古代數(shù)學(xué)成就的杰出代表作,其中《方田》章給出計算弧田面積所用的經(jīng)驗方式為:弧田面積=(弦×矢+矢2),弧田(如圖)由圓弧和其所對弦所圍成,公式中“弦”指圓弧所對弦長,“矢”等于半徑長與圓心到弦的距離之差,現(xiàn)有圓心角為,半徑等于米的弧田,按照上述經(jīng)驗公式計算所得弧田面積約是

A. 平方米 B. 平方米

C. 平方米 D. 平方米

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】分形幾何學(xué)是美籍法國數(shù)學(xué)家伯努瓦..曼德爾布羅特在20世紀(jì)70年代創(chuàng)立的一門新學(xué)科,它的創(chuàng)立,為解決傳統(tǒng)科學(xué)眾多領(lǐng)域的難題提供了全新的思路,如圖是按照一定的分形規(guī)律生產(chǎn)成一個數(shù)形圖,則第13行的實心圓點的個數(shù)是______.

查看答案和解析>>

同步練習(xí)冊答案