橢圓上存在一點P,使得它對兩個焦點,的張角,則該橢圓的離心率的取值范圍是
A.B.C.D.
B.
由于,所以,應選B.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:單選題

橢圓的離心率為(   )
A.B.C.2D.4

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓的右焦點為,點在圓上任意一點(點第一象限內),過點作圓的切線交橢圓于兩點
(1)證明:;
(2)若橢圓離心率為,求線段長度的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知A、B為橢圓的左、右頂點,C(0,b),直線與X軸交于點D,與直線AC交于點P,且BP平分,則此橢圓的離心率為
A、  
B、  
C、  
D、

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

直線l:與橢圓相交A,B兩點,點C是橢圓上的動點,則面積的最大值為              。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知點,是直線上任意一點,以A、B為焦點的橢圓過點P.記橢圓離心率關于的函數(shù)為,那么下列結論正確的是 (  )
A.一一對應                B.函數(shù)無最小值,有最大值
C.函數(shù)是增函數(shù)            D.函數(shù)有最小值,無最大值

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

是橢圓上的兩點,點是線段的中點,線段的垂直平分線與橢圓相交于、兩點.
(Ⅰ)求直線的方程;
(Ⅱ)求以線段的中點為圓心且與直線相切的圓的方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)  
已知橢圓的離心率為,且過點.
(Ⅰ)求橢圓的標準方程;
(Ⅱ)垂直于坐標軸的直線與橢圓相交于、兩點,若以為直徑的圓經過坐標原點.證明:圓的半徑為定值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

設F1、F2為曲線C1+ =1的焦點,P是曲線與C1的一個交點,則△PF1F2的面積為_____________

查看答案和解析>>

同步練習冊答案