橢圓
上存在一點P,使得它對兩個焦點
,
的張角
,則該橢圓的離心率的取值范圍是
由于
,所以
,應選B.
練習冊系列答案
相關習題
科目:高中數(shù)學
來源:不詳
題型:解答題
已知橢圓
的右焦點為
,點
在圓
上任意一點(點
第一象限內),過點
作圓
的切線交橢圓
于兩點
、
.
(1)證明:
;
(2)若橢圓離心率為
,求線段
長度的最大值.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
已知A、B為橢圓
的左、右頂點,C(0,b),直線
與X軸交于點D,與直線AC交于點P,且BP平分
,則此橢圓的離心率為
A、
B、
C、
D、
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
直線l:
與橢圓
相交A,B兩點,點C是橢圓上的動點,則
面積的最大值為
。
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
已知點
、
,
是直線
上任意一點,以A、B為焦點的橢圓過點P.記橢圓離心率
關于
的函數(shù)為
,那么下列結論正確的是 ( )
A.
與
一一對應 B.函數(shù)
無最小值,有最大值
C.函數(shù)
是增函數(shù) D.函數(shù)
有最小值,無最大值
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
設
、
是橢圓
上的兩點,點
是線段
的中點,線段
的垂直平分線與橢圓相交于
、
兩點.
(Ⅰ)求直線
的方程;
(Ⅱ)求以線段
的中點
為圓心且與直線
相切的圓的方程.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題滿分12分)
已知橢圓
:
的離心率為
,且過點
.
(Ⅰ)求橢圓
的標準方程;
(Ⅱ)垂直于坐標軸的直線
與橢圓
相交于
、
兩點,若以
為直徑的圓
經過坐標原點.證明:圓
的半徑為定值.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
設F
1、F
2為曲線C
1:
+
=1的焦點,P是曲線
:
與C
1的一個交點,則△PF
1F
2的面積為_____________
查看答案和解析>>