以橢圓短軸為直徑的圓經(jīng)過此橢圓的焦點,則橢圓的離心率是(  )
A.B.C.D.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

((本小題滿分13分)
已知橢圓,為其左、右焦點,為橢圓上任一點,的重心為,內(nèi)心,且有(其中為實數(shù))
(1)求橢圓的離心率;
(2)過焦點的直線與橢圓相交于點,若面積的最大值為3,求橢圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)p:方程表示是焦點在y軸上的橢圓;q:三次函數(shù)
內(nèi)單調(diào)遞增,.求使“”為真命題的實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

((本小題滿分14分)
已知橢圓的離心率為,且橢圓上一點與橢圓的兩個焦點構(gòu)成的三角形周長為
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)直線與橢圓交于兩點,且以為直徑的圓過橢圓的右頂點,
面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分15分)
已知點,過點作拋物線的切線,切點在第二象限,如圖.(Ⅰ)求切點的縱坐標;
(Ⅱ)若離心率為的橢圓恰好經(jīng)過切點,設(shè)切線交橢圓的另一點為,記切線的斜率分別為,若,求橢圓方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

((本小題滿分12分)
橢圓的兩個焦點F1、F2,點P在橢圓C上,且PF1⊥F1F2,且|PF1|=
(I)求橢圓C的方程。
(II)以此橢圓的上頂點B為直角頂點作橢圓的內(nèi)接等腰直角三角形ABC,這樣的直角三角形是否存在?若存在,請說明有幾個;若不存在,請說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

.已知橢圓C:的離心率為,橢圓C上任意一點到橢圓兩個焦點的距離之和為6.
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)直線與橢圓C交于,兩點,點,且,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知方程表示橢圓,則的取值范圍為         .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

若M(x,y)是橢圓x2+=1上的動點,則x+2y的最大值為       .

查看答案和解析>>

同步練習冊答案