【題目】過點作圓的切線,已知,分別為切點,直線恰好經(jīng)過橢圓的右焦點和下頂點,則直線方程為___________;橢圓的標(biāo)準(zhǔn)方程是__________.
【答案】
【解析】
①當(dāng)過點的直線斜率不存在時,直線方程為,切點的坐標(biāo);
②當(dāng)直線斜率存在時,設(shè)方程為,根據(jù)圓心到切線的距離等于半徑,求出確定直線方程,直線方程與圓方程的聯(lián)立,進(jìn)一步求出切點的坐標(biāo),再求出方程,則橢圓的右焦點及下頂點可求,其標(biāo)準(zhǔn)方程可求.
解:①當(dāng)過點的直線斜率不存在時,直線方程為,切點的坐標(biāo);
②當(dāng)直線斜率存在時,設(shè)方程為,即,
根據(jù)直線與圓相切,圓心到切線的距離等于半徑,得
可以得到切線斜率,即
直線方程與圓方程的聯(lián)立
可以得切點的坐標(biāo),
根據(jù)、兩點坐標(biāo)可以得到直線方程為,(或利用過圓上一點作圓的兩條切線,則過兩切點的直線方程為)
依題意,與軸的交點即為橢圓右焦點,得,
與軸的交點即為橢圓下頂點坐標(biāo),所以,
根據(jù)公式得,
因此,橢圓方程為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】南北朝時代的偉大科學(xué)家祖暅在數(shù)學(xué)上有突出貢獻(xiàn),他在實踐的基礎(chǔ)上提出祖暅原理:“冪勢既同,則積不容異”.其含義是:夾在兩個平行平面之間的兩個幾何體,被平行于這兩個平行平面的任意平面所截,如果截得的兩個截面的面積總相等,那么這兩個幾何體的體積相等,如圖,夾在兩個平行平面之間的兩個幾何體的體積分別為,,被平行于這兩個平面的任意平面截得的兩個截面面積分別為、,則“、不總相等”是“,不相等”的( )
A.充分而不必要條件B.必要而不充分條件
C.充分必要條件D.既不充分也不必要條件
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】高斯是德國著名的數(shù)學(xué)家,近代數(shù)學(xué)奠基者之一,享有“數(shù)學(xué)王子”的稱號,用其名字命名的“高斯函數(shù)”為:設(shè),用表示不超過的最大整數(shù),則稱為高斯函數(shù),例如:,.已知函數(shù),函數(shù),則下列命題中真命題的個數(shù)是( )
①圖象關(guān)于對稱;
②是奇函數(shù);
③在上是增函數(shù);
④的值域是.
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),.
(1)當(dāng)時,求的單調(diào)區(qū)間;
(2)當(dāng)時,記函數(shù),若函數(shù)至少有三個零點,求實數(shù)的取值范圍
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對某兩名高三學(xué)生在連續(xù)9次數(shù)學(xué)測試中的成績(單位:分)進(jìn)行統(tǒng)計得到折線圖,下面是關(guān)于這兩位同學(xué)的數(shù)學(xué)成績分析.
①甲同學(xué)的成績折線圖具有較好的對稱性,故平均成績?yōu)?30分;
②根據(jù)甲同學(xué)成績折線圖提供的數(shù)據(jù)進(jìn)行統(tǒng)計,估計該同學(xué)平均成績在區(qū)間內(nèi);
③乙同學(xué)的數(shù)學(xué)成績與測試次號具有比較明顯的線性相關(guān)性,且為正相關(guān);
④乙同學(xué)連續(xù)九次測驗成績每一次均有明顯進(jìn)步.
其中正確的個數(shù)為( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的焦距為2,過點.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)橢圓的右焦點為F,定點,過點F且斜率不為零的直線l與橢圓交于A,B兩點,以線段AP為直徑的圓與直線的另一個交點為Q,證明:直線BQ恒過一定點,并求出該定點的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點F1、F2分別為雙曲線C:(a>0,b>0)的左、右焦點,點M(x0,y0)(x0<0)為C的漸近線與圓x2+y2=a2的一個交點,O為坐標(biāo)原點,若直線F1M與C的右支交于點N,且|MN|=|NF2|+|OF2|,則雙曲線C的離心率為_____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com