【題目】設(shè)函數(shù),.

(1)討論函數(shù)的單調(diào)性,并指出其單調(diào)區(qū)間;

(2)若對(duì)恒成立,求的取值范圍.

【答案】(1)見解析;(2)

【解析】

(1)對(duì)函數(shù)求導(dǎo),對(duì)a進(jìn)行討論:當(dāng)a>0a≤0時(shí),研究函數(shù)的單調(diào)性.(2)原不等式等價(jià)于上恒成立,構(gòu)造函數(shù),m(x)的單調(diào)性即即可得到a的范圍.

(1)由,得.

①當(dāng)時(shí),,,上單調(diào)遞減,

②當(dāng)時(shí),,

當(dāng)時(shí),;當(dāng)時(shí),.

上單調(diào)遞減,在上單調(diào)遞增,

故當(dāng)時(shí),上單調(diào)遞減;

當(dāng)時(shí),上單調(diào)遞減,在上單調(diào)遞增.

(2)原不等式等價(jià)于上恒成立,

上恒成立,

,

只需上恒成立即可.

又因?yàn)?/span>,所以處必大于等于0.

,由,可得.

當(dāng)時(shí), .

因?yàn)?/span>,所以,又,故時(shí)恒大于0,

所以當(dāng)時(shí),上單調(diào)遞增,

所以,故也在上單調(diào)遞增,

所以,即上恒大于0.

綜上,.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四棱錐中,側(cè)面為等邊三角形且垂直于底面,

.

(1)證明: ;

(2)若直線與平面所成角為,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列說法正確的是( )

A.在統(tǒng)計(jì)學(xué)中,獨(dú)立性檢驗(yàn)是檢驗(yàn)兩個(gè)分類變量是否有關(guān)系的一種統(tǒng)計(jì)方法

B.在殘差圖中,殘差分布的帶狀區(qū)域的寬度越狹窄,其模擬的效果越好

C.線性回歸方程對(duì)應(yīng)的直線至少經(jīng)過其樣本數(shù)據(jù)點(diǎn)中的一個(gè)點(diǎn)

D.在回歸分析中,相關(guān)指數(shù)越大,模擬的效果越好

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù).

(I)當(dāng)a=1時(shí),證明是增函數(shù);

(Ⅱ)若當(dāng)時(shí),,求a取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了解某市高三數(shù)學(xué)復(fù)習(xí)備考情況,該市教研機(jī)構(gòu)組織了一次檢測(cè)考試,并隨機(jī)抽取了部分高三理科學(xué)生數(shù)學(xué)成績(jī)繪制如圖所示的頻率分布直方圖.

(1)根據(jù)頻率分布直方圖,估計(jì)該市此次檢測(cè)理科數(shù)學(xué)的平均成績(jī);(精確到個(gè)位)

(2)研究發(fā)現(xiàn),本次檢測(cè)的理科數(shù)學(xué)成績(jī)近似服從正態(tài)分布,約為),按以往的統(tǒng)計(jì)數(shù)據(jù),理科數(shù)學(xué)成績(jī)能達(dá)到自主招生分?jǐn)?shù)要求的同學(xué)約占.

(。估計(jì)本次檢測(cè)成績(jī)達(dá)到自主招生分?jǐn)?shù)要求的理科數(shù)學(xué)成績(jī)大約是多少分?(精確到個(gè)位)

(ⅱ)從該市高三理科學(xué)生中隨機(jī)抽取人,記理科數(shù)學(xué)成績(jī)能達(dá)到自主招生分?jǐn)?shù)要求的人數(shù)為,求的分布列及數(shù)學(xué)期望.(說明:表示的概率.參考數(shù)據(jù):

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系xOy中,曲線y=x2+mx–2與x軸交于A,B兩點(diǎn),點(diǎn)C的坐標(biāo)為(0,1).當(dāng)m變化時(shí),解答下列問題:

(1)能否出現(xiàn)ACBC的情況?說明理由;

(2)證明過AB,C三點(diǎn)的圓在y軸上截得的弦長(zhǎng)為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知關(guān)于x的函數(shù),其導(dǎo)函數(shù).

1)如果函數(shù)處有極值,求函數(shù)的表達(dá)式;

2)當(dāng)時(shí),函數(shù)的圖象上任一點(diǎn)P處的切線斜率為k,若,求實(shí)數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)的最大值為,周期為,將函數(shù)的圖象向左平移個(gè)單位長(zhǎng)度得到的圖象,若是偶函數(shù),則的解析式為( )

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,在四棱錐中,底面為菱形,底面,點(diǎn)上的一個(gè)動(dòng)點(diǎn),,.

(1)當(dāng)時(shí),求證:;

(2)當(dāng)平面時(shí),求二面角的余弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案