【題目】在△ABC中,內(nèi)角A,B,C的對邊分別為a,b,c,已知a=bcosC+csinB,b=2,則△ABC面積的最大值為 .
【答案】 +1
【解析】解:在△ABC中,∵a=bcosC+ccosB,又a=bcosC+csinB,b=2,
∴cosB=sinB,
∴tanB=1,B∈(0,π).
由余弦定理可得:b2=a2+c2﹣2accosB,
∴4≥2ac﹣ ac,當(dāng)且僅當(dāng)a=c時取等號.
∴ac≤4+2 .
∴S△ABC= acsinB≤ (4+2 )× = +1.
故答案為: +1.
a=bcosC+ccosB,又a=2cosC+csinB,b=2,可得B.由余弦定理可得:b2=a2+c2﹣2accosB,利用基本不等式的性質(zhì)可得ac≤4+2 ,即可得出三角形面積的最大值.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,橢圓E: =1(a>b>0)的焦距為2,且過點( , ).
(1)求橢圓E的方程;
(2)若點A,B分別是橢圓E的左、右頂點,直線l經(jīng)過點B且垂直于x軸,點P是橢圓上異于A,B的任意一點,直線AP交l于點M. ①設(shè)直線OM的斜率為k1 , 直線BP的斜率為k2 , 求證:k1k2為定值;
②設(shè)過點M垂直于PB的直線為m.求證:直線m過定點,并求出定點的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,底面ABCD為直角梯形,AB⊥AD,AD∥BC,AD= BC=2,E在BC上,且BE= AB=1,側(cè)棱PA⊥平面ABCD.
(1)求證:平面PDE⊥平面PAC;
(2)若△PAB為等腰直角三角形. (i)求直線PE與平面PAC所成角的正弦值;
(ii)求二面角A﹣PC﹣D的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義在R上的函數(shù)f(x)滿足2f(4﹣x)=f(x)+x2﹣2,則曲線y=f(x)在點(2,f(2))處的切線方程是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知向量 ,函數(shù) ,若函數(shù)f(x)圖象的兩個相鄰的對稱軸間的距離為 .
(1)求函數(shù)f(x)的單調(diào)增區(qū)間;
(2)在△ABC中,角A,B,C所對的邊分別是a,b,c,若△ABC滿足f(A)=1,a=3,BC邊上的中線長為3,求△ABC的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=|2x﹣1|+|2x+a|,g(x)=x+3.
(1)當(dāng)a=2時,求不等式f(x)<g(x)的解集;
(2)設(shè)a> ,且當(dāng)x∈[ ,a]時,f(x)≤g(x),求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】[選修4-5:不等式選講]
已知函數(shù)f(x)=|ax﹣2|.
(Ⅰ)當(dāng)a=2時,解不等式f(x)>x+1;
(Ⅱ)若關(guān)于x的不等式f(x)+f(﹣x)< 有實數(shù)解,求m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】據(jù)某市地產(chǎn)數(shù)據(jù)研究院的數(shù)據(jù)顯示,2016年該市新建住宅銷售均價走勢如圖所示,為抑制房價過快上漲,政府從8月份采取宏觀調(diào)控措施,10月份開始房價得到很好的抑制.
(Ⅰ)地產(chǎn)數(shù)據(jù)研究院研究發(fā)現(xiàn),3月至7月的各月均價y(萬元/平方米)與月份x之間具有較強的線性相關(guān)關(guān)系,試建立y關(guān)于x的回歸方程(系數(shù)精確到0.01),政府若不調(diào)控,依次相關(guān)關(guān)系預(yù)測第12月份該市新建住宅銷售均價;
(Ⅱ)地產(chǎn)數(shù)據(jù)研究院在2016年的12個月份中,隨機抽取三個月份的數(shù)據(jù)作樣本分析,若關(guān)注所抽三個月份的所屬季度,記不同季度的個數(shù)為X,求X的分布列和數(shù)學(xué)期望.
參考數(shù)據(jù): =25, =5.36, =0.64
回歸方程 中斜率和截距的最小二乘估計公式分別為:
= , .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com