數學英語物理化學 生物地理
數學英語已回答習題未回答習題題目匯總試卷匯總
是定義在上的偶函數且在上遞增,不等式的解集為
解析試題分析:利用函數的奇偶性可把不等式轉化到區(qū)間[0,+∞)上,再由單調性可去掉不等式中的符號“f”,從而化為具體不等式解決。解:因為f(x)為R上的偶函數,所以等價于,因為又f(x)在[0,+∞)上遞增,所以,故答案為考點:函數奇偶性、單調性點評:本題考查函數奇偶性、單調性的綜合應用及抽象不等式的求解,解決本題的關鍵是利用函數性質化抽象不等式為具體不等式處理
科目:高中數學 來源: 題型:填空題
方程的實數解的個數為_______.
函數的的單調遞減區(qū)間是 .
函數單調遞減區(qū)間是 。
函數的最大值是 。
是定義在上的奇函數,且當,設,給出三個條件:①②,③.其中可以推出的條件共有 個.
已知是定義在上的偶函數,在上為增函數,且,則不等式的解集為 .
函數在區(qū)間上不單調,則的取值范圍 ;
函數的定義域為__________.
百度致信 - 練習冊列表 - 試題列表
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)