如果a>b>0,則下列不等式
1
a
1
b
,②a3>b3,③lg(a2+1)>lg(b2+1),④2a>2b中成立的是(  )
分析:由于a>b>0,利用不等式的基本性質(zhì)可排除①,可判斷②的正誤,再根據(jù)對(duì)數(shù)函數(shù)與指數(shù)函數(shù)的性質(zhì)即可判斷③④.
解答:解:∵a>b>0,
1
a
1
b
,可排除①;,
a3>b3,故②正確;
a2>b2,a2+1>b2+1,又y=lgx為增函數(shù),故lg(a2+1)>lg(b2+1),③正確;
當(dāng)a>b時(shí),2a>2b,故④正確.
綜上所述,成立的有②③④.
故選B.
點(diǎn)評(píng):本題考查不等式的基本性質(zhì),難點(diǎn)在于對(duì)不等式的基本性質(zhì)與函數(shù)性質(zhì)的掌握與綜合運(yùn)用,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

本題有(1)、(2)、(3)三個(gè)選考題,每題7分,請(qǐng)考生任選2題作答,滿分14分.如果多做,則按所做的前兩題計(jì)分
(1)二階矩陣M對(duì)應(yīng)的變換將向量
1
-1
,
-2
1
分別變換成向量
3
-2
-2
1
,直線l在M的變換下所得到的直線l′的方程是2x-y-1=0,求直線l的方程.
(2)過點(diǎn)P(-3,0)且傾斜角為30°的直線l和曲線C:
x=s+
1
s
y=s-
1
s
(s為參數(shù))相交于A,B兩點(diǎn),求線段AB的長.
(3)若不等式|a-1|≥x+2y+2z,對(duì)滿足x2+y2+z2=1的一切實(shí)數(shù)x,y,z恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•東城區(qū)一模)設(shè)A是由n個(gè)有序?qū)崝?shù)構(gòu)成的一個(gè)數(shù)組,記作:A=(a1,a2,…,ai,…,an).其中ai(i=1,2,…,n)稱為數(shù)組A的“元”,S稱為A的下標(biāo).如果數(shù)組S中的每個(gè)“元”都是來自 數(shù)組A中不同下標(biāo)的“元”,則稱A=(a1,a2,…,an)為B=(b1,b2,…bn)的子數(shù)組.定義兩個(gè)數(shù)組A=(a1,a2,…,an),B=(b1,b2,…,bn)的關(guān)系數(shù)為C(A,B)=a1b1+a2b2+…+anbn
(Ⅰ)若A=(-
1
2
1
2
)
,B=(-1,1,2,3),設(shè)S是B的含有兩個(gè)“元”的子數(shù)組,求C(A,S)的最大值;
(Ⅱ)若A=(
3
3
,
3
3
3
3
)
,B=(0,a,b,c),且a2+b2+c2=1,S為B的含有三個(gè)“元”的子數(shù)組,求C(A,S)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2007•揭陽二模)如圖(1)示,定義在D上的函數(shù)f(x),如果滿足:對(duì)?x∈D,?常數(shù)A,都有f(x)≥A成立,則稱函數(shù)f(x)在D上有下界,其中A稱為函數(shù)的下界.(提示:圖(1)、(2)中的常數(shù)A、B可以是正數(shù),也可以是負(fù)數(shù)或零)  

(Ⅰ)試判斷函數(shù)f(x)=x3+
48
x
在(0,+∞)上是否有下界?并說明理由;
(Ⅱ)又如具有如圖(2)特征的函數(shù)稱為在D上有上界.請(qǐng)你類比函數(shù)有下界的定義,給出函數(shù)f(x)在D上有上界的定義,并判斷(Ⅰ)中的函數(shù)在(-∞,0)上是否有上界?并說明理由;
(Ⅲ)若函數(shù)f(x)在D上既有上界又有下界,則稱函數(shù)f(x)在D上有界,函數(shù)f(x)叫做有界函數(shù).試探究函數(shù)f(x)=ax3+
b
x
(a>0,b>0a,b是常數(shù))是否是[m,n](m>0,n>0,m、n是常數(shù))上的有界函數(shù)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

有(1)、(2)、(3)三個(gè)選考題,每題7分,請(qǐng)考生任選2題作答,滿分14分.如果多做,則按所做的前兩題記分.
(1)選修4-2:矩陣與變換
已知點(diǎn)A(1,0),B(2,2),C(3,0),矩陣M表示變換”順時(shí)針旋轉(zhuǎn)45°”.
(Ⅰ)寫出矩陣M及其逆矩陣M-1
(Ⅱ)請(qǐng)寫出△ABC在矩陣M-1對(duì)應(yīng)的變換作用下所得△A1B1C1的面積.
(2)選修4-4:坐標(biāo)系與參數(shù)方程
過P(2,0)作傾斜角為α的直線l與曲線E:
x=cosθ
y=
2
2
sinθ
(θ為參數(shù))交于A,B兩點(diǎn).
(Ⅰ)求曲線E的普通方程及l(fā)的參數(shù)方程;
(Ⅱ)求sinα的取值范圍.
(3)(選修4-5 不等式證明選講)
已知正實(shí)數(shù)a、b、c滿足條件a+b+c=3,
(Ⅰ)求證:
a
+
b
+
c
≤3

(Ⅱ)若c=ab,求c的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)本題有(1),(2),(3)三個(gè)選答題,每題7分,請(qǐng)考生任選2題作答,滿分14分.如果多做,則按所做的前兩題計(jì)分.作答時(shí),先用2B鉛筆在答題卡上把所選題目對(duì)應(yīng)的題號(hào)涂黑.
(1)選修4-2:矩陣與變換
如圖所示:△OAB在伸縮變換M作用下變?yōu)椤鱋A1B1
(i)求矩陣M的特征值及相應(yīng)的特征向量;
(ii)求逆矩陣M-1以及(M-120
(2)選修4-4:坐標(biāo)系與參數(shù)方程.
已知曲線C1的參數(shù)方程為
x=2sinθ
y=cosθ
(θ為參數(shù)),曲線C2的參數(shù)方程為
x=2t
y=t+1
(t為參數(shù))
(i)若將曲線C1與C2上各點(diǎn)的橫坐標(biāo)都縮短為原來的一半,分別得到曲線C1和C2,求出曲線C1和C2的普通方程;
(ii)以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系,求過極點(diǎn)且與C2垂直的直線的極坐標(biāo)方程.
(3)選修4-5:不等式選講
已知a,b,c為實(shí)數(shù),且a+b+c+2-2m=0,a2+
b 2
4
+
c 2
9
+m-1=0
(i)求證:a2+
b 2
4
+
c 2
9
(a+b+c) 2
14

(ii)求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案