【題目】將函數(shù)y=sinx的圖象上所有的點(diǎn)向右平行移動(dòng) 個(gè)單位長(zhǎng)度,再把所得各點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來(lái)的2倍(縱坐標(biāo)不變),所得圖象的函數(shù)解析式是( )
A.y=sin(2x )
B.y=sin(2x )
C.y=sin( x )
D.y=sin( x )
【答案】C
【解析】解:將函數(shù)y=sinx的圖象上所有的點(diǎn)向右平行移動(dòng) 個(gè)單位長(zhǎng)度,所得函數(shù)圖象的解析式為y=sin(x )
再把所得各點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來(lái)的2倍(縱坐標(biāo)不變),所得圖象的函數(shù)解析式是y=sin( x ).
故選C.
【考點(diǎn)精析】關(guān)于本題考查的函數(shù)y=Asin(ωx+φ)的圖象變換,需要了解圖象上所有點(diǎn)向左(右)平移個(gè)單位長(zhǎng)度,得到函數(shù)的圖象;再將函數(shù)的圖象上所有點(diǎn)的橫坐標(biāo)伸長(zhǎng)(縮短)到原來(lái)的倍(縱坐標(biāo)不變),得到函數(shù)的圖象;再將函數(shù)的圖象上所有點(diǎn)的縱坐標(biāo)伸長(zhǎng)(縮短)到原來(lái)的倍(橫坐標(biāo)不變),得到函數(shù)的圖象才能得出正確答案.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線C:y2=2px(p>0)的焦點(diǎn)為F,A為C上異于原點(diǎn)的任意一點(diǎn),過(guò)點(diǎn)A的直線l交C于另一點(diǎn)B,交x軸的正半軸交于點(diǎn)D,且有|FA|=|FD|,當(dāng)點(diǎn)A的橫坐標(biāo)為3時(shí),△ADF為正三角形
(1)求C的方程
(2)延長(zhǎng)AF交拋物線于點(diǎn)E,過(guò)點(diǎn)E作拋物線的切線l1 , 求證:l1∥l.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù) ,且該函數(shù)的圖象過(guò)點(diǎn)(1,5). (Ⅰ)求f(x)的解析式,并判斷f(x)的奇偶性;
(Ⅱ)判斷f(x)在區(qū)間(0,2)上的單調(diào)性,并用函數(shù)單調(diào)性的定義證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,多面體OABCD,AB=CD=2,AD=BC= ,AC=BD= ,且OA,OB,OC兩兩垂直,則下列說(shuō)法正確的是( )
A.直線OB∥平面ACD
B.球面經(jīng)過(guò)點(diǎn)A,B,C,D四點(diǎn)的球的直徑是
C.直線AD與OB所成角是45°
D.二面角A﹣OC﹣D等于30°
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在四面體ABCD中,AB=CD=2 ,AD=BD=3,AC=BC=4,點(diǎn)E,F(xiàn),G,H分別在棱AD,BD,BC,AC上,若直線AB,CD都平行于平面EFGH,則四邊形EFGH面積的最大值是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=Asin(ωx+)(A>0,ω>0,||<π)圖象的最高點(diǎn)D的坐標(biāo)為 ,與點(diǎn)D相鄰的最低點(diǎn)坐標(biāo)為 . (Ⅰ)求函數(shù)f(x)的解析式;
(Ⅱ)求滿足f(x)=1的實(shí)數(shù)x的集合.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)四棱錐P﹣ABCD的底面不是平行四邊形,用平面 α去截此四棱錐,使得截面四邊形是平行四邊形,則這樣的平面α( )
A.不存在
B.只有1個(gè)
C.恰有4個(gè)
D.有無(wú)數(shù)多個(gè)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列{an}是遞增的等比數(shù)列,且a1+a4=9,a2a3=8.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)Sn為數(shù)列{an}的前n項(xiàng)和,bn= ,求數(shù)列{bn}的前n項(xiàng)和Tn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓C的半徑為1,圓心C(a,2a﹣4),(其中a>0),點(diǎn)O(0,0),A(0,3)
(1)若圓C關(guān)于直線x﹣y﹣3=0對(duì)稱,過(guò)點(diǎn)A作圓C的切線,求切線的方程;
(2)若圓C上存在點(diǎn)P,使|PA|=|2PO|,求圓心C的橫坐標(biāo)a的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com