【題目】已知平面向量,,滿足,且,則的最大值是______.
【答案】3
【解析】
分別以所在的直線為x,y軸建立直角坐標系,分類討論:當{||,||}={1,2},||=3,設(shè),則x2+y2=9,則(1+x,2+y),有||的最大值,其幾何意義是圓x2+y2=9上點(x,y)與定點(﹣1,﹣2)的距離的最大值;其他情況同理,然后求出各種情況的最大值進行比較即可.
分別以所在的直線為x,y軸建立直角坐標系,
①當{||,||}={1,2},||=3,則,
設(shè),則x2+y2=9,
∴(1+x,2+y),
∴||的最大值,其幾何意義是圓x2+y2=9上點(x,y)與定點(﹣1,﹣2)的距離的最大值為3;
②當{||,||}={1,3},||=2,則,x2+y2=4,
∴(1+x,3+y)
∴||的最大值,其幾何意義是圓x2+y2=4上點(x,y)與定點(﹣1,﹣3)的距離的最大值為22,
③當{||,||}={2,3},||=1,則,
設(shè),則x2+y2=1
∴(2+x,3+y)
∴||的最大值,其幾何意義是在圓x2+y2=1上取
點(x,y)與定點(﹣2,﹣3)的距離的最大值為11
∵,
故||的最大值為3.
故答案為:3
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在三棱錐P-ABC中,PA⊥底面ABC, .點D,E,N分別為棱PA,PC,BC的中點,M是線段AD的中點,PA=AC=4,AB=2.
(Ⅰ)求證:MN∥平面BDE;
(Ⅱ)求二面角C-EM-N的正弦值;
(Ⅲ)已知點H在棱PA上,且直線NH與直線BE所成角的余弦值為,求線段AH的長.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如表提供了工廠技術(shù)改造后某種型號設(shè)備的使用年限和所支出的維修費(萬元)的幾組對照數(shù)據(jù):
(年) | 2 | 3 | 4 | 5 | 6 |
(萬元) | 1 | 2.5 | 3 | 4 | 4.5 |
參考公式:,.
(1)若知道對呈線性相關(guān)關(guān)系,請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出關(guān)于的線性回歸方程;
(2)已知該工廠技術(shù)改造前該型號設(shè)備使用10年的維修費用為9萬元,試根據(jù)(1)求出的線性回歸方程,預測該型號設(shè)備技術(shù)改造后,使用10年的維修費用能否比技術(shù)改造前降低?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系xOy中,直線l的參數(shù)方程為(t是參數(shù)),在以坐標原點為極點,x軸的正半軸為極軸的極坐標系中,曲線C的極坐標方程為.
(Ⅰ)寫出直線l的普通方程、曲線C的參數(shù)方程;
(Ⅱ)過曲線C上任意一點A作與直線l的夾角為45°的直線,設(shè)該直線與直線l交于點B,求的最值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(本小題滿分12分)設(shè)函數(shù).
(Ⅰ)討論函數(shù)的單調(diào)性;
(Ⅱ)當函數(shù)有最大值且最大值大于時,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為了了解人們對“延遲退休年齡政策”的態(tài)度,某部門從網(wǎng)年齡在15~65歲的人群中隨機調(diào)查100人,調(diào)查數(shù)據(jù)的頻率分布直方圖和支持“延遲退休”的人數(shù)與年齡的統(tǒng)計結(jié)果如下:
(I)由頻率分布直方圖估計年齡的眾數(shù)和平均數(shù);
(II)由以上統(tǒng)計數(shù)據(jù)填2×2列聯(lián)表,并判斷是否有95%的把握認為以45歲為分界點的不同人群對“延遲退休年齡政策”的支持度有差異;
參考數(shù)據(jù):
(III)若以45歲為分界點,從不支持“延遲退休”的人中按分層抽樣的方法抽取8人參加某項活動.現(xiàn)從這8人中隨機抽2人.求抽到的2人中1人是45歲以下,另一人是45歲以上的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】雙曲線的左、右焦點為,,為右支上的動點(非頂點),為的內(nèi)心.當變化時,的軌跡為( )
A.直線的一部分B.橢圓的一部分
C.雙曲線的一部分D.無法確定
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】市政府招商引資,為吸引外商,決定第一個月產(chǎn)品免稅,某外資廠該第一個月A型產(chǎn)品出廠價為每件10元,月銷售量為6萬件;第二個月,當?shù)卣_始對該商品征收稅率為 ,即銷售1元要征收元)的稅收,于是該產(chǎn)品的出廠價就上升到每件元,預計月銷售量將減少p萬件.
(1)將第二個月政府對該商品征收的稅收y(萬元)表示成p的函數(shù),并指出這個函數(shù)的定義域;
(2)要使第二個月該廠的稅收不少于1萬元,則p的范圍是多少?
(3)在第(2)問的前提下,要讓廠家本月獲得最大銷售金額,則p應為多少?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知曲線:,:,則下面結(jié)論正確的是( )
A. 把上各點的橫坐標伸長到原來的2倍,縱坐標不變,再把得到的曲線向右平移個單位長度,得到曲線
B. 把上各點的橫坐標伸長到原來的2倍,縱坐標不變,再把得到的曲線向右平移個單位長度,得到曲線
C. 把上各點的橫坐標縮短到原來的倍,縱坐標不變,再把得到的曲線向左平移個單位長度,得到曲線
D. 把上各點的橫坐標縮短到原來的倍,縱坐標不變,再把得到的曲線向右平移個單位長度,得到曲線
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com