【題目】(1+tan21°)(1+tan22°)(1+tan23°)(1+tan24°)的值是 ( )
A.16
B.8
C.4
D.2
【答案】C
【解析】解:根據tan45°=tan(21°+24°)= =1 得到tan21°+tan24°=1﹣tan21°tan24°,
可得tan21°+tan24°+tan21°tan24°=1
同理得到tan22°+tan23°=1﹣tan22°tan23°,
tan22°+tan23°+tan22°tan23°=1;
(1+tan21°)(1+tan22°)(1+tan23°)(1+tan24°)
=[(1+tan21°)(1+tan24°)][(1+tan22°)(1+tan23°)]
=(1+tan24°+tan21°+tan24°tan21°)(1+tan22°+tan23°+tan22°tan23°)
=(1+1﹣tan24°tan21°+tan24°tan21°)(1+1﹣tan22°tan23°+tan22°tan23°)
=4
故選C.
【考點精析】本題主要考查了兩角和與差的正切公式的相關知識點,需要掌握兩角和與差的正切公式:才能正確解答此題.
科目:高中數(shù)學 來源: 題型:
【題目】設函數(shù)f(x)的定義域為D,若存在非零實數(shù)m,使得對于任意x∈M(MD),有(x﹣m)∈D且f(x﹣m)≤f(x),則稱f(x)為M上的m度低調函數(shù).如果定義域為R的函數(shù)f(x)是奇函數(shù),當x≥0時,f(x)=|x﹣a2|﹣a2 , 且f(x)為R上的5度低調函數(shù),那么實數(shù)a的取值范圍為 .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓 的左頂點和上頂點分別為A、B,左、右焦點分別是F1 , F2 , 在線段AB上有且只有一個點P滿足PF1⊥PF2 , 則橢圓的離心率為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知圓心為C的圓過點A(0,﹣6)和B(1,﹣5),且圓心在直線l:x﹣y+1=0上.
(1)求圓心為C的圓的標準方程;
(2)過點M(2,8)作圓的切線,求切線方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知為常數(shù), ,函數(shù), (其中是自然對數(shù)的底數(shù)).
(1)過坐標原點作曲線的切線,設切點為,求證: ;
(2)令,若函數(shù)在區(qū)間上是單調函數(shù),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)y=f(x)對于任意x∈R有 ,且當x∈[﹣1,1]時,f(x)=x2+1,則以下命題正確的是: ①函數(shù)數(shù)y=f(x)是周期為2的偶函數(shù);
②函數(shù)y=f(x)在[2,3]上單調遞增;
③函數(shù) 的最大值是4;
④若關于x的方程[f(x)]2﹣f(x)﹣m=0有實根,則實數(shù)m的范圍是[0,2];
⑤當x1 , x2∈[1,3]時, .
其中真命題的序號是 .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)= ,若存在實數(shù)x1 , x2 , x3 , x4 , 當x1<x2<x3<x4時滿足f(x1)=f(x2)=f(x3)=f(x4),則x1x2x3x4的取值范圍是( )
A.(7, )
B.(21, )
C.[27,30)
D.(27, )
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設f(x)是定義在R上以2為周期的偶函數(shù),已知x∈(0,1)時,f(x)= (1﹣x),則函數(shù)f(x)在(1,2)上( )
A.是減函數(shù),且f(x)>0
B.是增函數(shù),且f(x)>0
C.是增函數(shù),且f(x)<0
D.是減函數(shù),且f(x)<0
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在直三棱柱ABC﹣A1B1C1中,點M,N分別為線段A1B,AC1的中點.
(1)求證:MN∥平面BB1C1C;
(2)若D在邊BC上,AD⊥DC1 , 求證:MN⊥AD.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com