(本題滿(mǎn)分16分,第(1)小題4分,第(2)小題6分,第(3)小題6分)

已知函數(shù);

(1)求出函數(shù)的對(duì)稱(chēng)中心;(2)證明:函數(shù)在上為減函數(shù);

(3)是否存在負(fù)數(shù),使得成立,若存在求出;若不存在,請(qǐng)說(shuō)明理由。

解:(1)  (2分)

函數(shù)的對(duì)稱(chēng)中心為(-1,-1)   (2分)

(2)任取,且  (1分)

∵   (4分)

∴函數(shù)在上為減函數(shù)     (1分)

(3)不存在   (1分)   假設(shè)存在負(fù)數(shù),使得成立,

則   (1分)      即          

     (2分)

與矛盾,   (1分)所以不存在負(fù)數(shù),使得成立。  (1分)

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(本題滿(mǎn)分16分,第一小題8分;第二小題8分)

已知軸正方向的單位向量,設(shè)=, =,且滿(mǎn)足.

求點(diǎn)的軌跡方程;

過(guò)點(diǎn)的直線交上述軌跡于兩點(diǎn),且,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年上海市高三第三次月考試題文科數(shù)學(xué) 題型:解答題

. (本題滿(mǎn)分16分,第1小題滿(mǎn)分4分,第2小題滿(mǎn)分6分,第3小題滿(mǎn)分6分)

已知公差大于零的等差數(shù)列的前項(xiàng)和為,且滿(mǎn)足,

(1)求數(shù)列的通項(xiàng)公式;

(2)若數(shù)列是等差數(shù)列,且,求非零常數(shù)

(3)若(2)中的的前項(xiàng)和為,求證:

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:上海市長(zhǎng)寧區(qū)2010屆高三第二次模擬考試數(shù)學(xué)文 題型:解答題

(本題滿(mǎn)分16分,第(1)小題4分,第(2)小題6分,第(2)小題6分)

在平行四邊形中,已知過(guò)點(diǎn)的直線與線段分別相交于點(diǎn)。若。

(1)求證:的關(guān)系為;

(2)設(shè),定義在上的偶函數(shù),當(dāng)時(shí),且函數(shù)圖象關(guān)于直線對(duì)稱(chēng),求證:,并求時(shí)的解析式;

(3)在(2)的條件下,不等式上恒成立,求實(shí)數(shù)的取值范圍。

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010年上海市徐匯區(qū)高三第二次模擬考試數(shù)學(xué)卷(理) 題型:解答題

(本題滿(mǎn)分16分;第(1)小題5分,第(2)小題5分,第(3)小題6分)

設(shè)、為坐標(biāo)平面上的點(diǎn),直線為坐標(biāo)原點(diǎn))與拋物線交于點(diǎn)(異于).

(1)       若對(duì)任意,點(diǎn)在拋物線上,試問(wèn)當(dāng)為何值時(shí),點(diǎn)在某一圓上,并求出該圓方程;

(2)       若點(diǎn)在橢圓上,試問(wèn):點(diǎn)能否在某一雙曲線上,若能,求出該雙曲線方程,若不能,說(shuō)明理由;

(3)       對(duì)(1)中點(diǎn)所在圓方程,設(shè)、是圓上兩點(diǎn),且滿(mǎn)足,試問(wèn):是否存在一個(gè)定圓,使直線恒與圓相切.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010年上海市徐匯區(qū)高三第二次模擬考試數(shù)學(xué)卷(文) 題型:解答題

(本題滿(mǎn)分16分,第一小題8分;第二小題8分)

已知軸正方向的單位向量,設(shè)=, =,且滿(mǎn)足.

(1) 求點(diǎn)的軌跡方程;

(2)    過(guò)點(diǎn)的直線交上述軌跡于兩點(diǎn),且,求直線的方程.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案