過(guò)點(diǎn)且被點(diǎn)平分的雙曲線(xiàn)的弦所在直線(xiàn)方程為 _.
解析解:(由于雙曲線(xiàn)圖象關(guān)于 x 軸對(duì)稱(chēng),且 M 不在 x 軸上,所以所求直線(xiàn)不平行于 y 軸,即斜率為實(shí)數(shù))設(shè)所求直線(xiàn)斜率為 a,與雙曲線(xiàn)兩交點(diǎn)坐標(biāo)為 (3+t,-1+at) 和 (3-t,-1-at).
坐標(biāo)代入雙曲線(xiàn)方程,得:
∴所求直線(xiàn)方程為 y+1=-(x-3)即3x+4y-5=0
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
橢圓的兩個(gè)焦點(diǎn)分別為,過(guò)作垂直于軸的直線(xiàn)與橢圓相交,其中一個(gè)交點(diǎn)為,則= .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
為過(guò)拋物線(xiàn)焦點(diǎn)的一條弦,設(shè),以下結(jié)論正確的是_______
①且;
②的最小值為;
③以為直徑的圓與軸相切;
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖所示,、分別為橢圓:的左、右兩個(gè)焦點(diǎn),、為兩個(gè)頂點(diǎn),已知頂點(diǎn)到、兩點(diǎn)的距離之和為.
(1)求橢圓的方程;
(2)求橢圓上任意一點(diǎn)到右焦點(diǎn)的距離的最小值;
(3)作的平行線(xiàn)交橢圓于、兩點(diǎn),求弦長(zhǎng)的最大值,并求取最大值時(shí)的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
以橢圓的右焦點(diǎn)為圓心作一個(gè)圓,使此圓過(guò)橢圓中心并交橢圓于點(diǎn)M,N,
若過(guò)橢圓左焦點(diǎn)的直線(xiàn)MF1是圓的切線(xiàn),則橢圓的離心率為
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
設(shè)中心在坐標(biāo)原點(diǎn),以坐標(biāo)軸為對(duì)稱(chēng)軸的圓錐曲線(xiàn),離心率為,且過(guò)點(diǎn)(5,4),則其焦距為
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com