【題目】執(zhí)行如圖所示的程序框圖,如果輸出S=3,那么判斷框內(nèi)應填入的條件是( )
A.k≤6
B.k≤7
C.k≤8
D.k≤9
【答案】B
【解析】解:根據(jù)程序框圖,運行結(jié)果如下:
S k
第一次循環(huán) log23 3
第二次循環(huán) log23log34 4
第三次循環(huán) log23log34log45 5
第四次循環(huán) log23log34log45log56 6
第五次循環(huán) log23log34log45log56log67 7
第六次循環(huán) log23log34log45log56log67log78=log28=3 8
故如果輸出S=3,那么只能進行六次循環(huán),故判斷框內(nèi)應填入的條件是k≤7.
故選B.
【考點精析】利用程序框圖對題目進行判斷即可得到答案,需要熟知程序框圖又稱流程圖,是一種用規(guī)定的圖形、指向線及文字說明來準確、直觀地表示算法的圖形;一個程序框圖包括以下幾部分:表示相應操作的程序框;帶箭頭的流程線;程序框外必要文字說明.
科目:高中數(shù)學 來源: 題型:
【題目】如圖所示,有兩條相交成60°角的直線,交點為.甲、乙分別在上,起初甲離點,乙離點,后來甲沿的方向,乙沿的方向,同時以的速度步行.求:
(1)起初兩人的距離是多少?
(2)后兩人的距離是多少?
(3)什么時候兩人的距離最短?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某大型水果超市每天以元/千克的價格從水果基地購進若干水果,然后以元/千克的價格出售,若有剩余,則將剩下的水果以元/千克的價格退回水果基地,為了確定進貨數(shù)量,該超市記錄了水果最近天的日需求量(單位:千克),整理得下表:
日需求量 | |||||||
頻數(shù) |
以天記錄的各日需求量的頻率代替各日需求量的概率.
(1)求該超市水果日需求量(單位:千克)的分布列;
(2)若該超市一天購進水果千克,記超市當天水果獲得的利潤為(單位:元),求的分布列及其數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某公司為了解廣告投入對銷售收益的影響,在若干地區(qū)各投入萬元廣告費用,并將各地的銷售收益(單位:萬元)繪制成如圖所示的頻率分布直方圖.由于工作人員操作失誤,橫軸的數(shù)據(jù)丟失,但可以確定橫軸是從開始計數(shù)的.
廣告投入/萬元 | 1 | 2 | 3 | 4 | 5 |
銷售收益/萬元 | 2 | 3 | 2 | 5 | 7 |
(Ⅰ)根據(jù)頻率分布直方圖計算圖中各小長方形的寬度;
(Ⅱ)該公司按照類似的研究方法,測得另外一些數(shù)據(jù),并整理得到上表:
表中的數(shù)據(jù)顯示與之間存在線性相關(guān)關(guān)系,求關(guān)于的回歸方程;
(Ⅲ)若廣告投入萬元時,實際銷售收益為萬元,求殘差.
附:,
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=sin(2ωx+)+sin(2ωx-)+2cos2ωx,其中ω>0,且函數(shù)f(x)的最小正周期為π
(1)求ω的值;
(2)求f(x)的單調(diào)增區(qū)間
(3)若函數(shù)g(x)=f(x)-a在區(qū)間[-,]上有兩個零點,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】對正整數(shù)n,記In={1,2,3…,n},Pn={ |m∈In , k∈In}.
(1)求集合P7中元素的個數(shù);
(2)若Pn的子集A中任意兩個元素之和不是整數(shù)的平方,則稱A為“稀疏集”.求n的最大值,使Pn能分成兩個不相交的稀疏集的并集.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)對任意實數(shù)x,y恒有f(x+y)=f(x)+f(y)且當x>0,f(x)<0.
給出下列四個結(jié)論:
①f(0)=0; ②f(x)為偶函數(shù);
③f(x)為R上減函數(shù); ④f(x)為R上增函數(shù).
其中正確的結(jié)論是( 。
A. ①③B. ①④C. ②③D. ②④
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com