設(shè)平面向量
a
=(x1,y1),
b
=(x2,y2),定義運(yùn)算⊙:
a
b
=x1y2-y1x2.已知平面向量
a
,
b
c
,則下列說法錯誤的是( 。
A、(
a
b
)+(
b
a
)=0
B、存在非零向量a,b同時滿足
a
b
=0且
a
b
=0
C、(
a
+
b
)⊙
c
=
a
c
+
b
c
D、|
a
b
|2=|
a
|2|
b
|2-|
a
b
|2
分析:根據(jù)定義不難得出B是錯誤的,
a
b
=x1y2-y1x2=0,說明向
a
b
是互相平行的向量,若
a
b
=0,說明它們是垂直的向量.因?yàn)椴淮嬖趦蓚非零向量,它們既平行又垂直,故B選項(xiàng)是錯誤的,而對于其它選項(xiàng),可以分別證明它們是真命題.
解答:解:對于A,由定義得,
a
b
=x1y2-y1x2
b
a
=x2y1-y2x1,所以(
a
b
)+(
b
a
)=0成立,A正確.
對于B,因?yàn)閮蓚向量
a
b
平行的充要條件是x1y2-y1x2=0,若非零向量a,b同時滿足
a
b
=0且
a
b
=0,說明兩個向量既平行又垂直,故B選項(xiàng)是錯誤的.
設(shè)對于C,設(shè)
c
=(m,n)
,則(
a
+
b
)⊙
c
=(x1+x2,y1+y2)⊙
c
=n(x1+x2)-m(y1+y2)=(nx1-y1m)+(nx2-my2)=
a
c
+
b
c
,故C選項(xiàng)是正確的.
 對于D,|
a
b
|2=(x1y2-y1x2 2=x12y22-2x1x2y1y2+y12x22
|
a
|2|
b
|2-|
a
b
|2=(x12+y12)(x22+y22)-(x1x2+y1y22=x12y22-2x1x2y1y2+y12y22,因此D選項(xiàng)是正確的.
故選B
點(diǎn)評:本題考查了在新定義下向量數(shù)量積的應(yīng)用,屬于基礎(chǔ)題.牢記面向量的平行、垂直的充要條件,準(zhǔn)確運(yùn)用它們的坐標(biāo)運(yùn)算,是解決本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年浙江省寧波市高三高考理數(shù)模擬試題 題型:選擇題

設(shè)平面向量a=(x1,y1),b=(x2,y2) ,定義運(yùn)算⊙:a⊙b =x1y2-y1x2 .已知平面向量a,b,c,則下列說法錯誤的是

(A)  (a⊙b)+(b⊙a(bǔ))=0      (B)  存在非零向量a,b同時滿足a⊙b=0且a•b=0

(C)  (a+b)⊙c=(a⊙c)+(b⊙c) (D)  |a⊙b|2= |a|2|b|2-|a•b|2

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:單選題

設(shè)平面向量a="(x1,y1),b=(x2,y2)" ,定義運(yùn)算⊙:a⊙b ="x1y2-y1x2" .已知平面向量a,b,c,則下列說法錯誤的是


  1. A.
    (a⊙b)+(b⊙a(bǔ))=0
  2. B.
    存在非零向量a,b同時滿足a⊙b=0且a?b=0
  3. C.
    (a+b)⊙c=(a⊙c)+(b⊙c)
  4. D.
    |a⊙b|2= |a|2|b|2-|a?b|2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)平面向量a=(x1,y1),b(x2,y2) ,定義運(yùn)算⊙:ab =x1y2-y1x2 .已知平面向量a,b,c,則下列說法錯誤的是

(A)  (ab)+(ba)=0              (B)  存在非零向量a,b同時滿足ab=0且ab=0

(C)  (a+b)⊙c=(ac)+(bc)        (D)  |ab|2= |a|2|b|2-|ab|2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)平面向量a=(x1,y1),b=(x2,y2) ,定義運(yùn)算⊙:ab =x1y2-y1x2 .已知平面向量a,b,c,則下列說法錯誤的是

(A)  (ab)+(ba)=0              (B)  存在非零向量a,b同時滿足ab=0且ab=0

(C)  (a+b)⊙c=(ac)+(bc)        (D)  |ab|2= |a|2|b|2-|ab|2

查看答案和解析>>

同步練習(xí)冊答案