(1)已知△ABC的頂點A(0,-1),B(0,1),直線AC,直線BC的斜率之積等于m(m0),求頂點C的軌跡方程,并判斷軌跡為何種圓錐曲線.
(2)已知圓M的方程為:(x+1)2+y2=(2a)2(a>0,且a1),定點N(1,0),動點P在圓M上運動,線段PN的垂直平分線與直線MP相交于點Q,求點Q軌跡方程.
(1)設(shè)點C(x,y),由AC,BC所在直線的斜率之積等于m(m≠0),
得:
y-1
x
y+1
x
=m
,化簡得:-mx2+y2=1(x≠0).
當(dāng)m<-1時,軌跡E表示焦點在y軸上的橢圓,且除去(0,1),(0,-1)兩點;
當(dāng)m=-1時,軌跡E表示以(0,0)為圓心,半徑是1的圓,且除去(0,1),(0,-1)兩點;
當(dāng)-1<m<0時,軌跡E表示焦點在x軸上的橢圓,且除去(0,1),(0,-1)兩點;
當(dāng)m>0時,軌跡E表示焦點在y軸上的雙曲線,且除去(0,1),(0,-1)兩點.
(2)連結(jié)QN,則|QN|=|QP|,
當(dāng)a>1時,則點N在圓內(nèi),有|QN|+|QM|=|QP|+|QM|=|MP|=2a>|MN|,
∴點Q的軌跡是以M,N為焦點的橢圓,方程為:
x2
a2
+
y2
a2-1
=1

當(dāng)0<a<1時,則點N在圓外,有|QN|-|QM|=|QP|-|QM|=|MP|=2a<|MN|,
∴點Q的軌跡是以M,N為焦點的雙曲線,方程為:
x2
a2
-
y2
1-a2
=1
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知雙曲線C:
x2
a2
-
y2
b2
=1(a>0,b>0)
的左、右焦點分別為F1,F(xiàn)2,離心率為e.直線l:y=ex+a與x軸、y軸分別交于A,B兩點.
(1)求證:直線l與雙曲線C只有一個公共點;
(2)設(shè)直線l與雙曲線C的公共點為M,且
AM
AB
,證明:λ+e2=1;
(3)設(shè)P是點F1關(guān)于直線l的對稱點,當(dāng)△PF1F2為等腰三角形時,求e的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,梯形ABCD的底邊AB在y軸上,原點O為AB的中點,|AB|=
4
2
3
,|CD|=2-
4
2
3
,AC⊥BD.M為CD的中點.
(Ⅰ)求點M的軌跡方程;
(Ⅱ)過M作AB的垂線,垂足為N,若存在正常數(shù)λ0,使
MP
0
PN
,且P點到A、B的距離和為定值,求點P的軌跡E的方程;
(Ⅲ)過(0,
1
2
)的直線與軌跡E交于P、Q兩點,求△OPQ面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知雙曲線C的中心在原點,拋物線y2=2
5
x
的焦點是雙曲線C的一個焦點,且雙曲線經(jīng)過點(1,
3
)
,又知直線l:y=kx+1與雙曲線C相交于A、B兩點.
(1)求雙曲線C的方程;
(2)若
OA
OB
,求實數(shù)k值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓
x2
a2
+
y2
b2
=1(a>b>0),其左、右焦點分別為F1、F2,過F1作直線交橢圓于P、Q兩點,△F2PQ的周長為4
3

(1)若橢圓的離心率e=
3
3
,求橢圓的方程;
(2)若M為橢圓上一點,
MF1
MF2
=1,求△MF1F2的面積最大時的橢圓方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)雙曲線C的焦點在y軸上,離心率為
2
,其一個頂點的坐標(biāo)是(0,1).
(Ⅰ)求雙曲線C的標(biāo)準(zhǔn)方程;
(Ⅱ)若直線l與該雙曲線交于A、B兩點,且A、B的中點為(2,3),求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在直線l:x-y+9=0上任取一點M,過M作以F1(-3,0),F(xiàn)2(3,0)為焦點的橢圓,當(dāng)M在什么位置時,所作橢圓長軸最短?并求此橢圓方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知直角坐標(biāo)平面內(nèi)點A(x,y)到點F1(-1,0)與點F2(1,0)的距離之和為4.
(1)試求點A的軌跡M的方程;
(2)若斜率為
1
2
的直線l與軌跡M交于C、D兩點,點P(1,
3
2
)
為軌跡M上一點,記直線PC的斜率為k1,直線PD的斜率為k2,試問:k1+k2是否為定值?請證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知F1,F(xiàn)2分別是橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦點,且橢圓C的離心率e=
1
2
,F(xiàn)1也是拋物線C1:y2=-4x的焦點.
(Ⅰ)求橢圓C的方程;
(Ⅱ)過點F2的直線l交橢圓C于D,E兩點,且2
DF2
=
F2E
,點E關(guān)于x軸的對稱點為G,求直線GD的方程.

查看答案和解析>>

同步練習(xí)冊答案