【題目】某校從參加高一年級(jí)期末考試的學(xué)生中抽出60名學(xué)生,將其物理成績(jī)(均為整數(shù))分成六段,…后畫出如下頻率分布直方圖.觀察圖形的信息,回答下列問題:
(1)估計(jì)這次考試的眾數(shù)與中位數(shù)(結(jié)果保留一位小數(shù));
(2)估計(jì)這次考試的及格率(60分及以上為及格)和平均分.
【答案】
【解析】
解:(Ⅰ)眾數(shù)是最高小矩形中點(diǎn)的橫坐標(biāo),所以眾數(shù)為m=75(分);
前三個(gè)小矩形面積為0.01×10+0.015×10+0.015×10=0.4,
∵中位數(shù)要平分直方圖的面積,∴
(Ⅱ)依題意,60及以上的分?jǐn)?shù)所在的第三、四、五、六組,
頻率和為 (0.015+0.03+0.025+0.005)*10=0.75
所以,抽樣學(xué)生成績(jī)的合格率是75%
利用組中值估算抽樣學(xué)生的平均分45f1+55f2+65f3+75f4+85f5+95f6
=45×0.1+55×0.15+65×0.15+75×0.3+85×0.25+95×0.05=71
估計(jì)這次考試的平均分是71分.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)某校新、老校區(qū)之間開車單程所需時(shí)間為,只與道路暢通狀況有關(guān),對(duì)其容量為的樣本進(jìn)行統(tǒng)計(jì),結(jié)果如圖:
(分鐘) | 25 | 30 | 35 | 40 |
頻數(shù)(次) | 20 | 30 | 40 | 10 |
(1)求的分布列與數(shù)學(xué)期望;
(2)劉教授駕車從老校區(qū)出發(fā),前往新校區(qū)做一個(gè)50分鐘的講座,結(jié)束后立即返回老校區(qū),求劉教授從離開老校區(qū)到返回老校區(qū)共用時(shí)間不超過120分鐘的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某學(xué)校組織學(xué)生參加英語(yǔ)測(cè)試,成績(jī)的頻率分布直方圖如圖,數(shù)據(jù)的分組一次為[20,40),[40,60),[60,80),[80,100).若低于60分的人數(shù)是15人,則該班的學(xué)生人數(shù)是( )
A.45
B.50
C.55
D.60
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四棱錐P-ABCD的底面是矩形,PA⊥平面ABCD,E,F分別是AB,PD的中點(diǎn),且PA=AD.
(Ⅰ)求證:AF∥平面PEC;
(Ⅱ)求證:平面PEC⊥平面PCD.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線C1:x2=4y,C2:x2=﹣2py(p>0),點(diǎn)M(x0 , y0)在拋物線C2上,過M作C1的切線,切點(diǎn)為A,B(M為原點(diǎn)O時(shí),A,B重合于O),當(dāng)x0=1﹣ 時(shí),切線MA的斜率為﹣ .
(1)求P的值;
(2)當(dāng)M在C2上運(yùn)動(dòng)時(shí),求線段AB中點(diǎn)N的軌跡方程(A,B重合于O時(shí),中點(diǎn)為O).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知過點(diǎn)的橢圓: ()的左右焦點(diǎn)分別為、, 為橢圓上的任意一點(diǎn),且, , 成等差數(shù)列.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)直線: 交橢圓于, 兩點(diǎn),若點(diǎn)始終在以為直徑的圓外,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】過點(diǎn)( )引直線l與曲線y= 相交于A,B兩點(diǎn),O為坐標(biāo)原點(diǎn),當(dāng)△ABO的面積取得最大值時(shí),直線l的斜率等于( )
A.
B.-
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在斜三棱柱ABC-A1B1C1中,側(cè)面AA1C1C是菱形,AC1與A1C交于點(diǎn)O,點(diǎn)E是AB的中點(diǎn).
(1)求證:OE∥平面BCC1B1.
(2)若AC1⊥A1B,求證:AC1⊥BC.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】平面直角坐標(biāo)系xOy中,過橢圓M: (a>b>0)右焦點(diǎn)的直線x+y﹣ =0交M于A,B兩點(diǎn),P為AB的中點(diǎn),且OP的斜率為 .
(1)求M的方程
(2)C,D為M上的兩點(diǎn),若四邊形ACBD的對(duì)角線CD⊥AB,求四邊形ACBD面積的最大值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com