二元一次不等式組
x+y≤1
x≥0
y≥0
表示的平面區(qū)域的面積是______.
二元一次不等式組
x+y≤1
x≥0
y≥0
表示的平面區(qū)域如下圖所示:

由圖可知該區(qū)域是一個兩直角邊長均為1的等腰直角三角形
故S=
1
2
×1×1
=
1
2

故答案為:
1
2
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

不等式x-(m2-2m+4)y+6>0表示的平面區(qū)域是以直線x-(m2-2m+4)y+6=0為界的兩個平面區(qū)域中的一個,且點(1,1)在這個區(qū)域內(nèi),則實數(shù)m的取值范圍是( 。
A.(-∞,-1)∪(3,+∞)B.(-∞,-1]∪[3,+∞)C.[-1,3]D.(-1,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

某研究所計劃利用“神七”宇宙飛船進行新產(chǎn)品搭載實驗,計劃搭載新產(chǎn)品A、B,要根據(jù)該產(chǎn)品的研制成本、產(chǎn)品重量、搭載實驗費用和預(yù)計產(chǎn)生收益來決定具體安排,通過調(diào)查,有關(guān)數(shù)據(jù)如表:
產(chǎn)品A(件)產(chǎn)品B(件)
研制成本、搭載費用之和(萬元)2030計劃最大資金額300萬元
產(chǎn)品重量(千克)105最大搭載重量110千克
預(yù)計收益(萬元)8060
試問:如何安排這兩種產(chǎn)品的件數(shù)進行搭載,才能使總預(yù)計收益達到最大,最大收益是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)變量x、y滿足約束條件
x+y≥3
x-y≥-1
2x-y≤3
,則目標(biāo)函數(shù)z=
y
x-2
的取值范圍是( 。
A.[-2,
5
2
]
B.(-2,
5
2
C.(-∞,-2)∪(
5
2
,+∞)
D.(-∞,-2]∪[
5
2
,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

如果函數(shù)y=ax2+bx+a的圖象與x軸有兩個交點,則點(a,b)在aOb平面上的區(qū)域(不包含邊界)為( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

某服裝制造商現(xiàn)有10m2的棉布料,10m2的羊毛料,和6m2的絲綢料.做一條褲子需要1m2的棉布料,2m2的羊毛料,1m2的絲綢料.一條裙子需要1m2的棉布料,1m2的羊毛料,1m2的絲綢料.一條褲子的純收益是50元,一條裙子的純收益是40元,則該服裝制造商的最大收益為______元.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

由不等式組
x≥0
y≥0
x+y-1≤0
表示的平面區(qū)域(圖中陰影部分)為(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)x,y滿足約束條件
x+y≤3
y≤2x
y≥0
,則目標(biāo)函數(shù)z=2x+y的最大值是( 。
A.3B.4C.5D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

如果實數(shù)x,y滿足等式(x-2)2+y2=3,那么
y
x
的最大值是( 。
A.
1
2
B.
3
3
C.
3
2
D.
3

查看答案和解析>>

同步練習(xí)冊答案