【題目】平面圖形ABB1A1C1C如圖4所示,其中BB1C1C是矩形,BC=2,BB1=4,AB=AC= ,A1B1=A1C1= .現(xiàn)將該平面圖形分別沿BC和B1C1折疊,使△ABC與△A1B1C1所在平面都與平面BB1C1C垂直,再分別連接A2A,A2B,A2C,得到如圖2所示的空間圖形,對(duì)此空間圖形解答下列問(wèn)題.
(Ⅰ)證明:AA1⊥BC;
(Ⅱ)求AA1的長(zhǎng);
(Ⅲ)求二面角A﹣BC﹣A1的余弦值.

【答案】證明:(Ⅰ)取BC,B1C1的中點(diǎn)為點(diǎn)O,O1 , 連接AO,OO1 , A1O,A1O1 ,
∵AB=AC,∴AO⊥BC
∵平面ABC⊥平面BB1C1C,平面ABC∩平面BB1C1C=BC
∴AO⊥平面BB1C1C
同理A1O1⊥平面BB1C1C,∴AO∥A1O1 , ∴A、O、A1、O1共面
∵OO1⊥BC,AO⊥BC,OO1∩AO=O,∴BC⊥平面OO1A1A
∵AA1平面OO1A1A,∴AA1⊥BC;
(Ⅱ)解:延長(zhǎng)A1O1到D,使O1D=OA,則∵O1D∥OA,∴AD∥OO1 , AD=OO1
∵OO1⊥BC,平面A1B1C1⊥平面BB1C1C,平面A1B1C1∩平面BB1C1C=B1C1 ,
∴OO1⊥面A1B1C1 ,
∵AD∥OO1
∴AD⊥面A1B1C1 ,
∵AD=BB1=4,A1D=A1O1+O1D=2+1=3
∴AA1= =5;
(Ⅲ)解:∵AO⊥BC,A1O⊥BC,∴∠AOA1是二面角A﹣BC﹣A1的平面角
在直角△OO1A1中,A1O=
在△OAA1中,cos∠AOA1=﹣
∴二面角A﹣BC﹣A1的余弦值為﹣

【解析】(Ⅰ)證明AA1⊥BC,只需證明BC⊥平面OO1A1A,取BC,B1C1的中點(diǎn)為點(diǎn)O,O1 , 連接AO,OO1 , A1O,A1O1 , 即可證得;(Ⅱ)延長(zhǎng)A1O1到D,使O1D=OA,則可得AD∥OO1 , AD=OO1 , 可證OO1⊥面A1B1C1 , 從而AD⊥面A1B1C1 , 即可求AA1的長(zhǎng);(Ⅲ)證明∠AOA1是二面角A﹣BC﹣A1的平面角,在△OAA1中,利用余弦定理,可求二面角A﹣BC﹣A1的余弦值.
【考點(diǎn)精析】本題主要考查了直線與平面垂直的性質(zhì)和平面與平面垂直的性質(zhì)的相關(guān)知識(shí)點(diǎn),需要掌握垂直于同一個(gè)平面的兩條直線平行;兩個(gè)平面垂直,則一個(gè)平面內(nèi)垂直于交線的直線與另一個(gè)平面垂直才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若不等式|mx3﹣lnx|≥1對(duì)x∈(0,1]恒成立,則實(shí)數(shù)m的取值范圍是

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)△ABC的三個(gè)內(nèi)角A,B,C所對(duì)應(yīng)的邊為a,b,c,若A,B,C依次成等差數(shù)列且a2+c2=kb2 , 則實(shí)數(shù)k的取值范圍是

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在圓錐中,已知,⊙O的直徑,點(diǎn)C在底面圓周上,且,的中點(diǎn).

(Ⅰ)證明:∥平面

(Ⅱ)證明:平面平面;

(Ⅲ)求二面角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,點(diǎn)0(0,0),P(6,8),將向量 繞點(diǎn)O逆時(shí)針?lè)较蛐D(zhuǎn) 后得向量 ,則點(diǎn)Q的坐標(biāo)是(
A.(﹣7 ,﹣
B.(﹣7 ,
C.(﹣4 ,﹣2)
D.(﹣4 ,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)x0為函數(shù)f(x)=sinπx的零點(diǎn),且滿足|x0|+f(x0+)<33,則這樣的零點(diǎn)有( 。
A.61個(gè)
B.63個(gè)
C.65個(gè)
D.67個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】給出下列四個(gè)結(jié)論:

當(dāng)a為任意實(shí)數(shù)時(shí),直線(a﹣1)x﹣y+2a+1=0恒過(guò)定點(diǎn)P,則過(guò)點(diǎn)P且焦點(diǎn)在y軸上的拋物線的標(biāo)準(zhǔn)方程是;

已知雙曲線的右焦點(diǎn)為(5,0),一條漸近線方程為2x﹣y=0,則雙曲線的標(biāo)準(zhǔn)方程是;

拋物線的準(zhǔn)線方程為.

已知雙曲線,其離心率e(1,2),則m的取值范圍是(﹣12,0).

其中正確命題的序號(hào)是___________.(把你認(rèn)為正確命題的序號(hào)都填上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】△ABC中,A=120°,AB=5,BC,則AC的值為________

【答案】2

【解析】

利用余弦定理可得關(guān)于AC的方程,解之即可.

由余弦定理可知cosA===﹣,

解得AC=2或﹣7(舍去)

故答案為:2

【點(diǎn)睛】

對(duì)于余弦定理一定要熟記兩種形式:(1;(2.另外,在解與三角形、三角函數(shù)有關(guān)的問(wèn)題時(shí),還要記住, , 等特殊角的三角函數(shù)值,以便在解題中直接應(yīng)用.

型】填空
結(jié)束】
15

【題目】嫦娥奔月,舉國(guó)歡慶,據(jù)科學(xué)計(jì)算,運(yùn)載神六長(zhǎng)征二號(hào)系列火箭,在點(diǎn)火第一秒鐘通過(guò)的路程為2 km,以后每秒鐘通過(guò)的路程都增加2 km,在達(dá)到離地面210 km的高度時(shí),火箭與飛船分離,則這一過(guò)程大約需要的時(shí)間是______秒.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列命題中不正確的是( )

A. 平面平面,一條直線平行于平面,則一定平行于平面

B. 平面平面,則內(nèi)的任意一條直線都平行于平面

C. 一個(gè)三角形有兩條邊所在的直線分別平行于一個(gè)平面,那么該三角形所在的平面與這個(gè)平面平行

D. 分別在兩個(gè)平行平面內(nèi)的兩條直線只能是平行直線或異面直線

查看答案和解析>>

同步練習(xí)冊(cè)答案