【題目】已知不等式|2x﹣3|<x與不等式x2﹣mx+n<0的解集相同. (Ⅰ)求m﹣n;
(Ⅱ)若a、b、c∈(0,1),且ab+bc+ac=m﹣n,求a+b+c的最小值.
【答案】解:(Ⅰ)當(dāng)2x﹣3≥0,即x≥ 時(shí),不等式|2x﹣3|<x可化為2x﹣3<x,
解得x<3,∴ ≤x<3;
當(dāng)2x﹣3<0,即x< 時(shí),不等式|2x﹣3|<x可化為3﹣2x<x,
解得x>1,∴1<x< ;
綜上,不等式的解集為{x|1<x<3};
∴不等式x2﹣mx+n<0的解集為{x|1<x<3},
∴方程x2﹣mx+n=0的兩實(shí)數(shù)根為1和3,
∴ ,
∴m﹣n=4﹣3=1;
(Ⅱ)a、b、c∈(0,1),且ab+bc+ac=m﹣n=1,
∴(a+b+c)2=a2+b2+c2+2(ab+bc+ca)
≥ (2ab+2bc+2ac)+2(ab+bc+ac)
=3(ab+bc+ca)=3;
∴a+b+c的最小值是 .
【解析】(Ⅰ)討論2x﹣3≥0或2x﹣3<0,求出不等式|2x﹣3|<x的解集,得出不等式x2﹣mx+n<0的解集,利用根與系數(shù)的關(guān)系求出m、n的值;
(Ⅱ)根據(jù)a、b、c∈(0,1),且ab+bc+ac=1,求出(a+b+c)2的最小值,即可得出a+b+c的最小值.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用解一元二次不等式的相關(guān)知識(shí)可以得到問題的答案,需要掌握求一元二次不等式解集的步驟:一化:化二次項(xiàng)前的系數(shù)為正數(shù);二判:判斷對應(yīng)方程的根;三求:求對應(yīng)方程的根;四畫:畫出對應(yīng)函數(shù)的圖象;五解集:根據(jù)圖象寫出不等式的解集;規(guī)律:當(dāng)二次項(xiàng)系數(shù)為正時(shí),小于取中間,大于取兩邊.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,已知橢圓C1: =1和C2:x2+ =1.P為C1上的動(dòng)點(diǎn),Q為C2上的動(dòng)點(diǎn),w是 的最大值.記Ω={(P,Q)|P在C1上,Q在C2上,且 =w},則Ω中元素個(gè)數(shù)為( )
A.2個(gè)
B.4個(gè)
C.8個(gè)
D.無窮個(gè)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】巳知函數(shù)f(x)是定義在R上的奇函數(shù),且當(dāng)x∈(0,+∞)時(shí),都有不等式f(x)+xf'(x)>0成立,若 ,則a,b,c的大小關(guān)系是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系xoy中,曲線C的參數(shù)方程為 (t為參數(shù),a>0)以坐標(biāo)原點(diǎn)O為極點(diǎn),以x軸正半軸為極軸,建立極坐標(biāo)系,已知直線l的極坐標(biāo)方程為 . (Ⅰ)設(shè)P是曲線C上的一個(gè)動(dòng)點(diǎn),當(dāng)a=2時(shí),求點(diǎn)P到直線l的距離的最小值;
(Ⅱ)若曲線C上的所有點(diǎn)均在直線l的右下方,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,DC⊥平面ABC,EB∥DC,AC=BC=EB=2DC=2,∠ACB=120°,P,Q分別為AE,AB的中點(diǎn).
(Ⅰ)證明:PQ∥平面ACD;
(Ⅱ)求AD與平面ABE所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)= ,若方程f(f(x))=a(a>0)恰有兩個(gè)不相等的實(shí)根x1 , x2 , 則e e 的最大值為( )
A.
B.2(ln2﹣1)
C.
D.ln2﹣1
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知A為橢圓 =1(a>b>0)上的一個(gè)動(dòng)點(diǎn),弦AB,AC分別過左右焦點(diǎn)F1 , F2 , 且當(dāng)線段AF1的中點(diǎn)在y軸上時(shí),cos∠F1AF2= . (Ⅰ)求該橢圓的離心率;
(Ⅱ)設(shè) ,試判斷λ1+λ2是否為定值?若是定值,求出該定值,并給出證明;若不是定值,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了得到函數(shù)y=cos2x的圖象,只要把函數(shù) 的圖象上所有的點(diǎn)( )
A.向右平行移動(dòng) 個(gè)單位長度
B.向左平行移動(dòng) 個(gè)單位長度
C.向右平行移動(dòng) 個(gè)單位長度
D.向左平行移動(dòng) 個(gè)單位長度
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】我國古代算書《孫子算經(jīng)》上有個(gè)有趣的問題“出門望九堤”:今有出門重九堤,堤有九木,木有九枝,枝有九巢,巢有九禽,禽有九雛,雛有九毛,毛有九色,問各幾何?現(xiàn)在我們用右圖所示的程序框圖來解決這個(gè)問題,如果要使輸出的結(jié)果為禽的數(shù)目,則在該框圖中的判斷框中應(yīng)該填入的條件是( )
A.S>10000?
B.S<10000?
C.n≥5
D.n≤6
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com