(12分)橢圓C:的兩個焦點(diǎn)分別為 ,是橢圓上一點(diǎn),且滿足
(1)求離心率e的取值范圍;
(2)當(dāng)離心率e取得最小值時,點(diǎn)N( 0 , 3 )到橢圓上的點(diǎn)的最遠(yuǎn)距離為
(i)求此時橢圓C的方程;
(ii)設(shè)斜率為的直線l與橢圓C相交于不同的兩點(diǎn)A、B,Q為AB的中點(diǎn),問A、B兩點(diǎn)能否關(guān)于過點(diǎn)P(0,)、Q的直線對稱?若能,求出的取值范圍;若不能,請說明理由。
解:(1)、由幾何性質(zhì)知的取值范圍為:≤e<1………………3分
(2)、(i) 當(dāng)離心率e取最小值時,橢圓方程可表示為+ =" 1" 。設(shè)H( x , y )是橢圓上的一點(diǎn),則| NH |2 =x2+(y-3)2 =" -" (y+3)2+2b2+18 ,其中 - b≤y≤b
若0<b<3 ,則當(dāng)y =" -" b時,| NH |2有最大值b2+6b+9 ,所以由b2+6b+9=50解得b = -3±5(均舍去) …………………5分
若b≥3,則當(dāng)y = -3時,| NH |2有最大值2b2+18 ,所以由2b2+18=50解得b2=16
∴所求橢圓方程為+ = 1………………7分
(ii) 設(shè) A( x1 , y1 ) ,B( x2 , y2 ),Q( x0 , y0 ),則由兩式相減得x0+2ky0=0;……8分
又直線PQ⊥直線l,∴直線PQ的方程為y=" -" x - ,將點(diǎn)Q( x0 , y0 )坐標(biāo)代入得y0=" -" x0- ………②  ……9分
由①②解得Q( - k ,  ),而點(diǎn)Q必在橢圓的內(nèi)部
∴ + < 1,…… 10分, 由此得k2 < ,又k≠0 ∴ - < k < 0或0 < k <
故當(dāng)( - , 0 ) ∪( 0 , )時,A、B兩點(diǎn)關(guān)于過點(diǎn)P、Q、的直線對稱!12分
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

離心率為黃金比的橢圓稱為“優(yōu)美橢圓”.設(shè)
是優(yōu)美橢圓,F(xiàn)、A分別是它的左焦點(diǎn)和右頂點(diǎn),B是它的短軸的一個頂點(diǎn),則
等于(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

((本小題滿分14分)
設(shè)橢圓的左右焦點(diǎn)分別為、是橢圓上的一點(diǎn),,坐標(biāo)原點(diǎn)到直線的距離為
(1)求橢圓的方程;
(2)設(shè)是橢圓上的一點(diǎn),過點(diǎn)的直線軸于點(diǎn),交軸于點(diǎn),若,求直線的斜率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分14分)
已知A(1,1)是橢圓=1()上一點(diǎn),是橢圓的兩焦點(diǎn),且滿足
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)點(diǎn)是橢圓上兩點(diǎn),直線的傾斜角互補(bǔ),求直線的斜率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分10分) 如圖,已知橢圓C,經(jīng)過橢圓的右焦點(diǎn)F且斜率為的直線l交橢圓C于A、B兩點(diǎn),M為線段AB的中點(diǎn),設(shè)O為橢圓的中心,射線OM交橢圓于N點(diǎn).(I)是否存在,使對任意,總有成立?若存在,求出所有的值;
(II)若,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓C:的左右焦點(diǎn)分別為,點(diǎn)B為橢圓與
軸的正半軸的交點(diǎn),點(diǎn)P在第一象限內(nèi)且在橢圓上,且軸垂直, 
(1)求橢圓C的方程;
(2)設(shè)點(diǎn)B關(guān)于直線的對稱點(diǎn)E(異于點(diǎn)B)在橢圓C上,求的值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若焦點(diǎn)在軸上的橢圓的離心率為,則="(   " )
A        B.        C.         D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)為橢圓的兩個焦點(diǎn),點(diǎn)在橢圓上,且滿足,則的面積是                                                     (    )
A.1B.C.D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知的離心率是         .

查看答案和解析>>

同步練習(xí)冊答案