【題目】國家統(tǒng)計局服務業(yè)調(diào)查中心和中國物流與采購聯(lián)合會發(fā)布的2018年10月份至2019年9月份共12個月的中國制造業(yè)采購經(jīng)理指數(shù)(PMI)如下圖所示.則下列結論中錯誤的是( )
A.12個月的PMI值不低于50%的頻率為
B.12個月的PMI值的平均值低于50%
C.12個月的PMI值的眾數(shù)為49.4%
D.12個月的PMI值的中位數(shù)為50.3%
科目:高中數(shù)學 來源: 題型:
【題目】以直角坐標系xOy的原點為極坐標系的極點,x軸的正半軸為極軸.已知曲線的極坐標方程為,P是上一動點,,Q的軌跡為.
(1)求曲線的極坐標方程,并化為直角坐標方程,
(2)若點,直線l的參數(shù)方程為(t為參數(shù)),直線l與曲線的交點為A,B,當取最小值時,求直線l的普通方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知直線與橢圓相交于兩點,其中在第一象限,是橢圓上一點.
(1)記、是橢圓的左右焦點,若直線過,當到的距離與到直線的距離相等時,求點的橫坐標;
(2)若點關于軸對稱,當的面積最大時,求直線的方程;
(3)設直線和與軸分別交于,證明:為定值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知曲線C的參數(shù)方程為(t為參數(shù)),以原點O為極點,x軸的非負半軸為極軸建立極坐標系,過極點的兩射線、相互垂直,與曲線C分別相交于A、B兩點(不同于點O),且的傾斜角為銳角.
(1)求曲線C和射線的極坐標方程;
(2)求△OAB的面積的最小值,并求此時的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】橢圓經(jīng)過點,且離心率為.
(Ⅰ)求橢圓的方程;
(Ⅱ)過點任作一條直線與橢圓交于不同的兩點.在軸上是否存在點,使得?若存在,求出點的坐標;若不存在,請說明理由。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的左,右焦點分別為,,,M是橢圓E上的一個動點,且的面積的最大值為.
(1)求橢圓E的標準方程,
(2)若,,四邊形ABCD內(nèi)接于橢圓E,,記直線AD,BC的斜率分別為,,求證:為定值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知不等式|2x-1|+|2x-2|<x+3的解集是A.
(Ⅰ)求集合A;
(Ⅱ)設x,y∈A,對任意a∈R,求證:xy(||x+a|-|y+a||)<x2+y2.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設函數(shù)的圖象在處取得極值4.
(1)求函數(shù)的單調(diào)區(qū)間;
(2)對于函數(shù),若存在兩個不等正數(shù),,當時,函數(shù)的值域是,則把區(qū)間叫函數(shù)的“正保值區(qū)間”.問函數(shù)是否存在“正保值區(qū)間”,若存在,求出所有的“正保值區(qū)間”;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】己知函數(shù)f(x)對x∈R均有f(x)+2f(﹣x)=mx﹣6,若f(x)≥lnx恒成立,則實數(shù)m的取值范圍是_________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com